Revealing spatiotemporal matching patterns between traffic flux and road resources using big geodata - A case study of Beijing

北京 匹配(统计) 聚类分析 计算机科学 流量(计算机网络) 地理 运输工程 统计 数学 考古 工程类 机器学习 中国 计算机安全
作者
Xiaorui Yan,Ci Song,Tao Pei,Xi Wang,Mingbo Wu,Tianyu Liu,Hua Shu,Jie Chen
出处
期刊:Cities [Elsevier]
卷期号:127: 103754-103754 被引量:20
标识
DOI:10.1016/j.cities.2022.103754
摘要

Mismatch between road system and spatiotemporal heterogeneity of traffic flow is a key reason for traffic congestion. Existing studies mainly focus on local regions or specific times (morning and evening peak), while the spatiotemporal heterogeneity of match and its causes, especially at larger scales, are still insufficiently studied. Herein, we proposed a framework for analyzing the match between traffic flux, i.e. the number of individuals driving into or out of a region per unit time, and road resources, using mobile phone data covering approximately 17 million users over one week in Beijing. Matches were measured through comparisons between the share of traffic flux and that of road resources both globally and locally. First, a global analysis with Gini coefficient revealed the match in Beijing is at a long-lasting low level. Then, the spatiotemporal disparity of match was examined via our proposed regional match index. Specifically, overallocated areas (traffic flux exceeds its corresponding shares of road resources) were mainly along arterial roads, while underallocated ones were in suburbs and gated residential communities. To explore the mechanism, four spatiotemporal matching modes were identified through a time series clustering method, and their distributions were explained by urban function based on ‘point-of-interest’ data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaoxiaojiang完成签到 ,获得积分10
刚刚
JacekYu完成签到 ,获得积分10
1秒前
3秒前
今后应助温瞳采纳,获得10
4秒前
PN_Allen完成签到,获得积分10
4秒前
ypp完成签到,获得积分10
5秒前
稻草人完成签到 ,获得积分10
5秒前
卡布达发布了新的文献求助10
7秒前
要减肥的访旋完成签到,获得积分10
7秒前
烟花应助害羞的火龙果采纳,获得10
8秒前
打打应助ss采纳,获得10
10秒前
11秒前
lalala应助peikyang采纳,获得10
12秒前
嗖嗖完成签到,获得积分10
12秒前
英俊的铭应助Cc792采纳,获得10
13秒前
简单的丑发布了新的文献求助10
14秒前
14秒前
111发布了新的文献求助10
15秒前
16秒前
星辰大海应助瘦瘦白薇采纳,获得10
16秒前
在水一方应助zzz采纳,获得10
16秒前
17秒前
传奇3应助忧郁老头采纳,获得10
19秒前
孤独的南松完成签到,获得积分10
20秒前
qq6756完成签到,获得积分10
21秒前
22秒前
hibiwi完成签到,获得积分10
22秒前
直率媚颜发布了新的文献求助10
22秒前
22秒前
zhou发布了新的文献求助10
23秒前
23秒前
hibiwi发布了新的文献求助10
25秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
Candice应助科研通管家采纳,获得10
26秒前
大模型应助科研通管家采纳,获得10
26秒前
爆米花应助科研通管家采纳,获得10
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
今后应助科研通管家采纳,获得10
26秒前
丘比特应助科研通管家采纳,获得30
26秒前
情怀应助科研通管家采纳,获得10
26秒前
高分求助中
Histotechnology: A Self-Instructional Text 5th Edition 2000
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Encyclopedia of Computational Mechanics,2 edition 800
The Healthy Socialist Life in Maoist China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3270806
求助须知:如何正确求助?哪些是违规求助? 2910144
关于积分的说明 8352574
捐赠科研通 2580632
什么是DOI,文献DOI怎么找? 1403576
科研通“疑难数据库(出版商)”最低求助积分说明 655864
邀请新用户注册赠送积分活动 635245