高温合金
再结晶(地质)
材料科学
动态再结晶
熔模铸造
冶金
晶体塑性
热的
热加工
可塑性
粘塑性
机械工程
结构工程
复合材料
热力学
微观结构
有限元法
本构方程
工程类
地质学
古生物学
物理
模具
作者
Mujun Long,N. Leriche,N.T. Niane,Carl Labergère,Houssem Badreddine,David Grange
标识
DOI:10.1016/j.jmatprotec.2022.117624
摘要
A new methodology involving both experimentation and modeling to predict the recrystallization of nickel-based single-crystal superalloy parts after subsequent heat treatment is presented. Anisothermal mechanical tests are used to provide further validation of a thermal-elasto-viscoplastic behavior model, and process-specific values of the thermal expansion coefficient. Critical test specimens are casted, and modeled to monitor the thermal-mechanical histories of interesting zones. The proposed model is capable of predicting higher plasticity locations, consistently with the occurrence of recrystallization. Critical plasticity paths for recrystallization are identified, defining three regions: unrecrystallized, transition and recrystallized zones. Phenomenological-based numerical plastic strain and energy criteria for AM1 single-crystal superalloy are built, and validated on an industrial case. The proposed methodology provides a systematic approach for part design and process parameters optimization, enabling recrystallization to be predicted and hence avoided.
科研通智能强力驱动
Strongly Powered by AbleSci AI