Physics-Based Data-Driven Buffet-Onset Constraint for Aerodynamic Shape Optimization

翼型 跨音速 空气动力学 气动弹性 升力系数 Lift(数据挖掘) 马赫数 计算机科学 航空航天工程 物理 工程类 机械 雷诺数 湍流 机器学习
作者
Jichao Li,Sicheng He,Mengqi Zhang,Joaquim R. R. A. Martins,Boo Cheong Khoo
出处
期刊:AIAA Journal [American Institute of Aeronautics and Astronautics]
卷期号:60 (8): 4775-4788 被引量:7
标识
DOI:10.2514/1.j061519
摘要

Transonic buffet is undesirable because it causes vibration, and constraining buffet is crucial in transonic wing design. However, there is still a lack of accurate and efficient buffet formulation to impose the constraint. This work proposes a physics-based data-driven buffet analysis model generalizable for airfoil and wing shapes. The model is trained with data obtained from two-dimensional airfoils in a physics-based manner to extend it to buffet analyses of three-dimensional wings. Specifically, the model takes the pressure and friction distributions as inputs to discover the key physics (shock waves and flow separation) of transonic buffeting, rather than using shape and flow parameters as the input. High-quality sample airfoils are used and a mixture model of convolutional neural networks is proposed to improve accuracy. The model exhibits a mean absolute error of 0.05 deg in buffet factor prediction of 14,886 unseen testing data. Buffet boundary predictions using the model compare well with the reference results (a lift-curve break method) for various airfoils and wings. Wing shape optimization using the model appropriately considers buffet constraints, leading to an optimized wing with lower drag (by 1.7 counts) than that obtained by the state-of-the-art method. These results demonstrate the effectiveness of the proposed physics-based data-driven buffet analysis approach. The proposed method is a promising alternative to address other complex off-design constraints in aircraft design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宋北北完成签到,获得积分10
刚刚
秋枫忆完成签到,获得积分10
1秒前
Singularity应助可爱的芷云采纳,获得10
2秒前
等待的谷波完成签到 ,获得积分10
4秒前
胡不喜完成签到,获得积分10
6秒前
邓佳鑫Alan应助科研通管家采纳,获得10
6秒前
研友_ED5GK应助科研通管家采纳,获得30
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
genomed应助科研通管家采纳,获得10
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
邓佳鑫Alan应助科研通管家采纳,获得50
7秒前
科目三应助科研通管家采纳,获得10
7秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
不配.应助科研通管家采纳,获得20
7秒前
英姑应助科研通管家采纳,获得10
7秒前
Yziii应助科研通管家采纳,获得10
7秒前
华仔应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
LZNL完成签到,获得积分10
8秒前
传奇3应助wss123456采纳,获得10
8秒前
exy完成签到,获得积分10
12秒前
科研通AI2S应助Y.B.Cao采纳,获得10
13秒前
123完成签到,获得积分20
13秒前
活力菠萝完成签到,获得积分10
13秒前
无名草0502完成签到 ,获得积分10
14秒前
木子完成签到,获得积分10
17秒前
123发布了新的文献求助10
17秒前
冰雪物语发布了新的文献求助10
17秒前
蓝景轩辕完成签到 ,获得积分0
17秒前
Max完成签到 ,获得积分10
19秒前
WW完成签到,获得积分10
22秒前
Y.B.Cao完成签到,获得积分10
23秒前
222完成签到,获得积分10
23秒前
中恐完成签到,获得积分10
24秒前
shimenwanzhao完成签到 ,获得积分0
25秒前
楠楠完成签到,获得积分10
25秒前
KjLumos完成签到,获得积分10
26秒前
26秒前
害怕的听筠完成签到,获得积分10
27秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137174
求助须知:如何正确求助?哪些是违规求助? 2788210
关于积分的说明 7784949
捐赠科研通 2444164
什么是DOI,文献DOI怎么找? 1299822
科研通“疑难数据库(出版商)”最低求助积分说明 625576
版权声明 601011