Automatic Segmentation in Acute Ischemic Stroke: Prognostic Significance of Topological Stroke Volumes on Stroke Outcome

医学 冲程(发动机) 缺血性中风 急性中风 结果(博弈论) 心脏病学 物理医学与康复 内科学 缺血 组织纤溶酶原激活剂 数学 机械工程 工程类 数理经济学
作者
Kelvin Wong,Jonathon Cummock,LI Gui-hua,Rahul Ghosh,Pingyi Xu,John Volpi,Stephen T.C. Wong
出处
期刊:Stroke [Lippincott Williams & Wilkins]
卷期号:53 (9): 2896-2905 被引量:32
标识
DOI:10.1161/strokeaha.121.037982
摘要

Background: Stroke infarct volume predicts patient disability and has utility for clinical trial outcomes. Accurate infarct volume measurement requires manual segmentation of stroke boundaries in diffusion-weighted magnetic resonance imaging scans which is time-consuming and subject to variability. Automatic infarct segmentation should be robust to rotation and reflection; however, prior work has not encoded this property into deep learning architecture. Here, we use rotation-reflection equivariance and train a deep learning model to segment stroke volumes in a large cohort of well-characterized patients with acute ischemic stroke in different vascular territories. Methods: In this retrospective study, patients were selected from a stroke registry at Houston Methodist Hospital. Eight hundred seventy-five patients with acute ischemic stroke in any brain area who had magnetic resonance imaging with diffusion-weighted imaging were included for analysis and split 80/20 for training/testing. Infarct volumes were manually segmented by consensus of 3 independent clinical experts and cross-referenced against radiology reports. A rotation-reflection equivariant model was developed based on U-Net and grouped convolutions. Segmentation performance was evaluated using Dice score, precision, and recall. Ninety-day modified Rankin Scale outcome prediction was also evaluated using clinical variables and segmented stroke volumes in different brain regions. Results: Segmentation model Dice scores are 0.88 (95% CI, 0.87–0.89; training) and 0.85 (0.82–0.88; testing). The modified Rankin Scale outcome prediction AUC using stroke volume in 30 refined brain regions based upon modified Rankin Scale-relevance areas adjusted for clinical variables was 0.80 (0.76–0.83) with an accuracy of 0.75 (0.72–0.78). Conclusions: We trained a deep learning model with encoded rotation-reflection equivariance to segment acute ischemic stroke lesions in diffusion- weighted imaging using a large data set from the Houston Methodist stroke center. The model achieved competitive performance in 175 well-balanced hold-out testing cases that include strokes from different vascular territories. Furthermore, the location specific stroke volume segmentations from the deep learning model combined with clinical factors demonstrated high AUC and accuracy for 90-day modified Rankin Scale in an outcome prediction model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助烂漫书白采纳,获得10
刚刚
上官若男应助123采纳,获得10
1秒前
量子星尘发布了新的文献求助50
1秒前
冬季去看雨完成签到,获得积分10
1秒前
2秒前
2秒前
香蕉觅云应助酷炫的一笑采纳,获得10
2秒前
Lin琳发布了新的文献求助10
2秒前
3秒前
3秒前
Coco完成签到,获得积分10
4秒前
可爱的函函应助yy采纳,获得10
5秒前
xjx发布了新的文献求助10
5秒前
最佳完成签到 ,获得积分10
5秒前
英姑应助冬季去看雨采纳,获得10
6秒前
马玲完成签到,获得积分10
6秒前
6秒前
pp‘s完成签到,获得积分10
6秒前
lsc发布了新的文献求助10
7秒前
8秒前
重要达发布了新的文献求助10
8秒前
zfm发布了新的文献求助10
8秒前
xjcy给zj的求助进行了留言
8秒前
zhuzihao发布了新的文献求助10
8秒前
xjcy应助落后爆米花采纳,获得10
8秒前
自然的箴发布了新的文献求助10
8秒前
LLL发布了新的文献求助10
9秒前
9秒前
央央完成签到,获得积分10
9秒前
沈雨琦应助youjun采纳,获得10
10秒前
白小泽完成签到,获得积分10
11秒前
科研通AI6应助马玲采纳,获得10
11秒前
白桃发布了新的文献求助10
12秒前
12秒前
vfvv完成签到,获得积分10
13秒前
yff发布了新的文献求助10
13秒前
13秒前
上官若男应助xjx采纳,获得50
13秒前
15秒前
陶醉信封发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4585432
求助须知:如何正确求助?哪些是违规求助? 4002122
关于积分的说明 12389406
捐赠科研通 3678232
什么是DOI,文献DOI怎么找? 2027162
邀请新用户注册赠送积分活动 1060707
科研通“疑难数据库(出版商)”最低求助积分说明 947227