Automatic Segmentation in Acute Ischemic Stroke: Prognostic Significance of Topological Stroke Volumes on Stroke Outcome

医学 冲程(发动机) 缺血性中风 急性中风 结果(博弈论) 心脏病学 物理医学与康复 内科学 缺血 组织纤溶酶原激活剂 数学 机械工程 工程类 数理经济学
作者
Kelvin Wong,Jonathon Cummock,LI Gui-hua,Rahul Ghosh,Pingyi Xu,John Volpi,Stephen T.C. Wong
出处
期刊:Stroke [Ovid Technologies (Wolters Kluwer)]
卷期号:53 (9): 2896-2905 被引量:37
标识
DOI:10.1161/strokeaha.121.037982
摘要

Background: Stroke infarct volume predicts patient disability and has utility for clinical trial outcomes. Accurate infarct volume measurement requires manual segmentation of stroke boundaries in diffusion-weighted magnetic resonance imaging scans which is time-consuming and subject to variability. Automatic infarct segmentation should be robust to rotation and reflection; however, prior work has not encoded this property into deep learning architecture. Here, we use rotation-reflection equivariance and train a deep learning model to segment stroke volumes in a large cohort of well-characterized patients with acute ischemic stroke in different vascular territories. Methods: In this retrospective study, patients were selected from a stroke registry at Houston Methodist Hospital. Eight hundred seventy-five patients with acute ischemic stroke in any brain area who had magnetic resonance imaging with diffusion-weighted imaging were included for analysis and split 80/20 for training/testing. Infarct volumes were manually segmented by consensus of 3 independent clinical experts and cross-referenced against radiology reports. A rotation-reflection equivariant model was developed based on U-Net and grouped convolutions. Segmentation performance was evaluated using Dice score, precision, and recall. Ninety-day modified Rankin Scale outcome prediction was also evaluated using clinical variables and segmented stroke volumes in different brain regions. Results: Segmentation model Dice scores are 0.88 (95% CI, 0.87–0.89; training) and 0.85 (0.82–0.88; testing). The modified Rankin Scale outcome prediction AUC using stroke volume in 30 refined brain regions based upon modified Rankin Scale-relevance areas adjusted for clinical variables was 0.80 (0.76–0.83) with an accuracy of 0.75 (0.72–0.78). Conclusions: We trained a deep learning model with encoded rotation-reflection equivariance to segment acute ischemic stroke lesions in diffusion- weighted imaging using a large data set from the Houston Methodist stroke center. The model achieved competitive performance in 175 well-balanced hold-out testing cases that include strokes from different vascular territories. Furthermore, the location specific stroke volume segmentations from the deep learning model combined with clinical factors demonstrated high AUC and accuracy for 90-day modified Rankin Scale in an outcome prediction model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奋斗善若发布了新的文献求助30
1秒前
小范同学完成签到,获得积分10
1秒前
按时毕业完成签到,获得积分10
1秒前
阳阳完成签到,获得积分10
1秒前
深情冷雪完成签到,获得积分20
2秒前
黄婷完成签到,获得积分10
2秒前
PDA完成签到,获得积分10
2秒前
imzzy发布了新的文献求助10
2秒前
唯美发布了新的文献求助10
3秒前
虚心的大树完成签到 ,获得积分10
3秒前
沉柒完成签到,获得积分10
3秒前
小蘑菇应助CQ采纳,获得10
3秒前
啊嘞嘞完成签到,获得积分10
3秒前
阳光土豆完成签到,获得积分10
3秒前
张振宇完成签到 ,获得积分10
4秒前
王先生完成签到,获得积分10
4秒前
4秒前
shuyan完成签到,获得积分10
4秒前
修炼哥完成签到,获得积分10
5秒前
endothelial完成签到,获得积分10
5秒前
Weilang发布了新的文献求助10
5秒前
好好学习完成签到,获得积分10
5秒前
结实的宝川完成签到 ,获得积分10
7秒前
ROY完成签到,获得积分10
7秒前
英俊的铭应助Netsky采纳,获得10
7秒前
8秒前
林早早发布了新的文献求助10
8秒前
宋可乐完成签到,获得积分10
8秒前
9秒前
性感的面条完成签到,获得积分10
9秒前
syx发布了新的文献求助30
9秒前
10秒前
学术废物完成签到,获得积分20
10秒前
mickiller完成签到,获得积分10
10秒前
10秒前
聪明伊完成签到,获得积分10
10秒前
打打应助娇娇采纳,获得10
10秒前
BiangBiang关注了科研通微信公众号
11秒前
MAVS完成签到,获得积分10
11秒前
瞌睡米线完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645431
求助须知:如何正确求助?哪些是违规求助? 4768803
关于积分的说明 15028908
捐赠科研通 4804012
什么是DOI,文献DOI怎么找? 2568656
邀请新用户注册赠送积分活动 1525914
关于科研通互助平台的介绍 1485570