Automatic Segmentation in Acute Ischemic Stroke: Prognostic Significance of Topological Stroke Volumes on Stroke Outcome

医学 冲程(发动机) 缺血性中风 急性中风 结果(博弈论) 心脏病学 物理医学与康复 内科学 缺血 组织纤溶酶原激活剂 数学 机械工程 工程类 数理经济学
作者
Kelvin Wong,Jonathon Cummock,LI Gui-hua,Rahul Ghosh,Pingyi Xu,John Volpi,Stephen T.C. Wong
出处
期刊:Stroke [Lippincott Williams & Wilkins]
卷期号:53 (9): 2896-2905 被引量:30
标识
DOI:10.1161/strokeaha.121.037982
摘要

Background: Stroke infarct volume predicts patient disability and has utility for clinical trial outcomes. Accurate infarct volume measurement requires manual segmentation of stroke boundaries in diffusion-weighted magnetic resonance imaging scans which is time-consuming and subject to variability. Automatic infarct segmentation should be robust to rotation and reflection; however, prior work has not encoded this property into deep learning architecture. Here, we use rotation-reflection equivariance and train a deep learning model to segment stroke volumes in a large cohort of well-characterized patients with acute ischemic stroke in different vascular territories. Methods: In this retrospective study, patients were selected from a stroke registry at Houston Methodist Hospital. Eight hundred seventy-five patients with acute ischemic stroke in any brain area who had magnetic resonance imaging with diffusion-weighted imaging were included for analysis and split 80/20 for training/testing. Infarct volumes were manually segmented by consensus of 3 independent clinical experts and cross-referenced against radiology reports. A rotation-reflection equivariant model was developed based on U-Net and grouped convolutions. Segmentation performance was evaluated using Dice score, precision, and recall. Ninety-day modified Rankin Scale outcome prediction was also evaluated using clinical variables and segmented stroke volumes in different brain regions. Results: Segmentation model Dice scores are 0.88 (95% CI, 0.87–0.89; training) and 0.85 (0.82–0.88; testing). The modified Rankin Scale outcome prediction AUC using stroke volume in 30 refined brain regions based upon modified Rankin Scale-relevance areas adjusted for clinical variables was 0.80 (0.76–0.83) with an accuracy of 0.75 (0.72–0.78). Conclusions: We trained a deep learning model with encoded rotation-reflection equivariance to segment acute ischemic stroke lesions in diffusion- weighted imaging using a large data set from the Houston Methodist stroke center. The model achieved competitive performance in 175 well-balanced hold-out testing cases that include strokes from different vascular territories. Furthermore, the location specific stroke volume segmentations from the deep learning model combined with clinical factors demonstrated high AUC and accuracy for 90-day modified Rankin Scale in an outcome prediction model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕白完成签到,获得积分10
刚刚
英姑应助石浩天采纳,获得10
刚刚
lxt完成签到,获得积分10
1秒前
1秒前
Cecilia发布了新的文献求助10
1秒前
1秒前
Caesar完成签到,获得积分10
1秒前
1秒前
hao完成签到,获得积分10
1秒前
Lynn完成签到,获得积分10
2秒前
飞源完成签到 ,获得积分10
2秒前
2秒前
汉堡包应助薄荷巧克力采纳,获得10
2秒前
22发布了新的文献求助10
2秒前
2秒前
3秒前
zhangyu应助小橙子采纳,获得10
3秒前
wssf756发布了新的文献求助10
3秒前
3秒前
asdasdas发布了新的文献求助10
4秒前
善学以致用应助hh采纳,获得10
4秒前
4秒前
Arvin发布了新的文献求助10
6秒前
6秒前
uuuu完成签到,获得积分10
6秒前
6秒前
qiming完成签到,获得积分10
6秒前
7秒前
7秒前
gezid完成签到 ,获得积分10
7秒前
Crystal发布了新的文献求助10
8秒前
北落发布了新的文献求助10
8秒前
完美世界应助wch采纳,获得10
8秒前
yucuiliu发布了新的文献求助10
8秒前
8秒前
JasonSun完成签到,获得积分10
8秒前
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
小白完成签到,获得积分10
9秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016497
求助须知:如何正确求助?哪些是违规求助? 3556675
关于积分的说明 11322036
捐赠科研通 3289416
什么是DOI,文献DOI怎么找? 1812458
邀请新用户注册赠送积分活动 888053
科研通“疑难数据库(出版商)”最低求助积分说明 812060