Deep learning to diagnose Hashimoto’s thyroiditis from sonographic images

医学 甲状腺炎 人工智能 放射科 甲状腺 内科学 计算机科学 病理
作者
Qiang Zhang,Sheng Zhang,Yi Pan,Lin Sun,Jianxin Li,Yu Qiao,Jing Zhao,Xiaoqing Wang,Yixing Feng,Yanhui Zhao,Zhiming Zheng,Xiangming Yang,Lixia Liu,Chunxin Qin,Ke Zhao,Xiaonan Liu,Caixia Li,Liuyang Zhang,Chunrui Yang,Na Zhuo,Hong Zhang,Jie Liu,Jinglei Gao,Xiaoling Di,Fanbo Meng,Linlei Zhang,Yuxuan Wang,Yuansheng Duan,Hongru Shen,Yang Li,Meng Yang,Yichen Yang,Xiaojie Xin,Xi Wei,Xuan Zhou,Rui Jin,Lun Zhang,Xudong Wang,Fengju Song,Xiangqian Zheng,Ming Gao,Kexin Chen,Xiangchun Li
出处
期刊:Nature Communications [Springer Nature]
卷期号:13 (1) 被引量:26
标识
DOI:10.1038/s41467-022-31449-3
摘要

Hashimoto's thyroiditis (HT) is the main cause of hypothyroidism. We develop a deep learning model called HTNet for diagnosis of HT by training on 106,513 thyroid ultrasound images from 17,934 patients and test its performance on 5051 patients from 2 datasets of static images and 1 dataset of video data. HTNet achieves an area under the receiver operating curve (AUC) of 0.905 (95% CI: 0.894 to 0.915), 0.888 (0.836-0.939) and 0.895 (0.862-0.927). HTNet exceeds radiologists' performance on accuracy (83.2% versus 79.8%; binomial test, p < 0.001) and sensitivity (82.6% versus 68.1%; p < 0.001). By integrating serologic markers with imaging data, the performance of HTNet was significantly and marginally improved on the video (AUC, 0.949 versus 0.888; DeLong's test, p = 0.004) and static-image (AUC, 0.914 versus 0.901; p = 0.08) testing sets, respectively. HTNet may be helpful as a tool for the management of HT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
热情芷荷发布了新的文献求助10
刚刚
random完成签到,获得积分10
1秒前
1秒前
果果瑞宁完成签到,获得积分10
1秒前
2秒前
机智小虾米完成签到,获得积分20
2秒前
goldenfleece完成签到,获得积分10
3秒前
科研通AI2S应助学者采纳,获得10
3秒前
小杨完成签到,获得积分10
4秒前
sutharsons应助科研通管家采纳,获得30
5秒前
5秒前
Ava应助科研通管家采纳,获得10
5秒前
慕青应助科研通管家采纳,获得10
5秒前
所所应助科研通管家采纳,获得10
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得30
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
科目三应助科研通管家采纳,获得10
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
CipherSage应助科研通管家采纳,获得30
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
Eric_Lee2000应助科研通管家采纳,获得10
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
5秒前
王子完成签到,获得积分10
6秒前
李繁蕊发布了新的文献求助10
7秒前
诚心的大碗应助明理念桃采纳,获得20
7秒前
8秒前
meng完成签到,获得积分10
8秒前
学者完成签到,获得积分10
8秒前
英俊的铭应助愉快盼曼采纳,获得10
9秒前
9秒前
小媛完成签到 ,获得积分10
10秒前
学术小白完成签到,获得积分20
10秒前
赘婿应助xiaomeng采纳,获得10
10秒前
Khr1stINK发布了新的文献求助10
10秒前
清新的苑博完成签到,获得积分10
10秒前
11秒前
果果瑞宁发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808