已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep convolutional neural networks for estimating maize above-ground biomass using multi-source UAV images: a comparison with traditional machine learning algorithms

多光谱图像 RGB颜色模型 卷积神经网络 计算机科学 人工智能 稳健性(进化) 支持向量机 适应性 精准农业 随机森林 遥感 模式识别(心理学) 算法 农业 生态学 生物 基因 地质学 生物化学
作者
Danyang Yu,Yuanyuan Zha,Zhigang Sun,Jing Li,Xiuliang Jin,Wanxue Zhu,Jiang Bian,Li Ma,Yijian Zeng,Zhongbo Su
出处
期刊:Precision Agriculture [Springer Nature]
卷期号:24 (1): 92-113 被引量:44
标识
DOI:10.1007/s11119-022-09932-0
摘要

Accurate estimation of above-ground biomass (AGB) plays a significant role in characterizing crop growth status. In precision agriculture area, a widely-used method for measuring AGB is to develop regression relationships between AGB and agronomic traits extracted from multi-source remotely sensed images based on unmanned aerial vehicle (UAV) systems. However, such approach requires expert knowledges and causes the information loss of raw images. The objectives of this study are to (i) determine how multi-source images contribute to AGB estimation in single and whole growth stages; (ii) evaluate the robustness and adaptability of deep convolutional neural networks (DCNN) and other machine learning algorithms regarding AGB estimation. To establish multi-source image datasets, this study collected UAV red-green-blue (RGB), multispectral (MS) images and constructed the raster data for crop surface models (CSMs). Agronomic features were derived from the above-mentioned images and interpreted by the multiple linear regression, random forest, and support vector machine models. Then, a DCNN model was developed via an image-fusion architecture. Results show that the DCNN model provides the best estimation of maize AGB when a single type of image is considered, while the performance of DCNN degrades when sufficient agronomic features are used. Besides, the information of above three image datasets changes with various growth stages. The structure information derived from CSM images are more valuable than spectrum information derived from RGB and MS images in the vegetative stage, but less useful in the reproductive stage. Finally, a data fusion strategy was proposed according to the onboard sensors (or cost).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Hina完成签到,获得积分10
4秒前
4秒前
果子瓣儿发布了新的文献求助10
5秒前
JOJO发布了新的文献求助10
6秒前
小洋发布了新的文献求助10
8秒前
juyi关注了科研通微信公众号
9秒前
storm发布了新的文献求助10
9秒前
orixero应助yuyu采纳,获得30
10秒前
长情的芝麻完成签到 ,获得积分10
10秒前
飘萍过客完成签到,获得积分10
13秒前
15秒前
隐形曼青应助yuebaoji采纳,获得30
15秒前
EternalStrider完成签到,获得积分10
16秒前
16秒前
蔓越莓奶酥完成签到,获得积分20
17秒前
17秒前
重要的炳完成签到 ,获得积分10
18秒前
19秒前
Xx发布了新的文献求助30
20秒前
深情安青应助xzm采纳,获得10
20秒前
儒雅HR完成签到,获得积分10
21秒前
RuiWang发布了新的文献求助10
21秒前
科研通AI6应助科研通管家采纳,获得10
21秒前
21秒前
Ava应助科研通管家采纳,获得10
21秒前
深情安青应助科研通管家采纳,获得10
22秒前
22秒前
NexusExplorer应助科研通管家采纳,获得10
22秒前
大个应助科研通管家采纳,获得10
22秒前
Jeff发布了新的文献求助10
22秒前
科研通AI6应助科研通管家采纳,获得10
22秒前
爆米花应助科研通管家采纳,获得10
22秒前
慕青应助科研通管家采纳,获得10
22秒前
斯文败类应助科研通管家采纳,获得10
23秒前
风趣的弘文完成签到,获得积分10
23秒前
传奇3应助科研通管家采纳,获得10
23秒前
燕燕完成签到 ,获得积分10
23秒前
23秒前
23秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5705304
求助须知:如何正确求助?哪些是违规求助? 5162660
关于积分的说明 15244765
捐赠科研通 4859189
什么是DOI,文献DOI怎么找? 2607598
邀请新用户注册赠送积分活动 1558753
关于科研通互助平台的介绍 1516319