Deep convolutional neural networks for estimating maize above-ground biomass using multi-source UAV images: a comparison with traditional machine learning algorithms

多光谱图像 RGB颜色模型 卷积神经网络 计算机科学 人工智能 稳健性(进化) 支持向量机 适应性 精准农业 随机森林 遥感 模式识别(心理学) 算法 农业 生态学 生物 基因 地质学 生物化学
作者
Danyang Yu,Yuanyuan Zha,Zhigang Sun,Jing Li,Xiuliang Jin,Wanxue Zhu,Jiang Bian,Li Ma,Yijian Zeng,Zhongbo Su
出处
期刊:Precision Agriculture [Springer Science+Business Media]
卷期号:24 (1): 92-113 被引量:44
标识
DOI:10.1007/s11119-022-09932-0
摘要

Accurate estimation of above-ground biomass (AGB) plays a significant role in characterizing crop growth status. In precision agriculture area, a widely-used method for measuring AGB is to develop regression relationships between AGB and agronomic traits extracted from multi-source remotely sensed images based on unmanned aerial vehicle (UAV) systems. However, such approach requires expert knowledges and causes the information loss of raw images. The objectives of this study are to (i) determine how multi-source images contribute to AGB estimation in single and whole growth stages; (ii) evaluate the robustness and adaptability of deep convolutional neural networks (DCNN) and other machine learning algorithms regarding AGB estimation. To establish multi-source image datasets, this study collected UAV red-green-blue (RGB), multispectral (MS) images and constructed the raster data for crop surface models (CSMs). Agronomic features were derived from the above-mentioned images and interpreted by the multiple linear regression, random forest, and support vector machine models. Then, a DCNN model was developed via an image-fusion architecture. Results show that the DCNN model provides the best estimation of maize AGB when a single type of image is considered, while the performance of DCNN degrades when sufficient agronomic features are used. Besides, the information of above three image datasets changes with various growth stages. The structure information derived from CSM images are more valuable than spectrum information derived from RGB and MS images in the vegetative stage, but less useful in the reproductive stage. Finally, a data fusion strategy was proposed according to the onboard sensors (or cost).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
文献小助手完成签到,获得积分10
2秒前
2秒前
Friday发布了新的文献求助10
4秒前
du完成签到 ,获得积分0
4秒前
一玮完成签到 ,获得积分10
7秒前
7秒前
127关注了科研通微信公众号
8秒前
6666发布了新的文献求助10
8秒前
瘦瘦的依玉完成签到 ,获得积分10
9秒前
科研通AI5应助要减肥天问采纳,获得10
9秒前
万能图书馆应助Friday采纳,获得10
10秒前
Li完成签到,获得积分20
11秒前
11秒前
麦子发布了新的文献求助10
12秒前
12秒前
威武画板给威武画板的求助进行了留言
13秒前
淡淡嫣发布了新的文献求助10
13秒前
PZL完成签到,获得积分10
15秒前
顺利毕业发布了新的文献求助10
16秒前
17秒前
Friday完成签到,获得积分10
17秒前
17秒前
18秒前
18秒前
18秒前
20秒前
FashionBoy应助adreamy采纳,获得10
21秒前
鹿茸与共发布了新的文献求助10
21秒前
FashionBoy应助ll采纳,获得10
22秒前
机智幻嫣发布了新的文献求助10
22秒前
Marilyn完成签到 ,获得积分10
22秒前
lpw发布了新的文献求助10
22秒前
李健应助烂漫绿海采纳,获得10
22秒前
小慧完成签到 ,获得积分10
23秒前
127发布了新的文献求助10
23秒前
bkagyin应助windows采纳,获得10
23秒前
nipangle发布了新的文献求助30
23秒前
现实的听芹完成签到,获得积分10
24秒前
6666完成签到,获得积分20
25秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998752
求助须知:如何正确求助?哪些是违规求助? 3538216
关于积分的说明 11273702
捐赠科研通 3277200
什么是DOI,文献DOI怎么找? 1807436
邀请新用户注册赠送积分活动 883893
科研通“疑难数据库(出版商)”最低求助积分说明 810075