H^2-MIL: Exploring Hierarchical Representation with Heterogeneous Multiple Instance Learning for Whole Slide Image Analysis

联营 计算机科学 判别式 图形 特征学习 人工智能 代表(政治) 缩放比例 模式识别(心理学) 棱锥(几何) 块(置换群论) 理论计算机科学 数学 几何学 政治 政治学 法学
作者
Wentai Hou,Lequan Yu,Chengxuan Lin,Helong Huang,Rongshan Yu,Jing Qin,Liansheng Wang
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:36 (1): 933-941 被引量:32
标识
DOI:10.1609/aaai.v36i1.19976
摘要

Current representation learning methods for whole slide image (WSI) with pyramidal resolutions are inherently homogeneous and flat, which cannot fully exploit the multiscale and heterogeneous diagnostic information of different structures for comprehensive analysis. This paper presents a novel graph neural network-based multiple instance learning framework (i.e., H^2-MIL) to learn hierarchical representation from a heterogeneous graph with different resolutions for WSI analysis. A heterogeneous graph with the “resolution” attribute is constructed to explicitly model the feature and spatial-scaling relationship of multi-resolution patches. We then design a novel resolution-aware attention convolution (RAConv) block to learn compact yet discriminative representation from the graph, which tackles the heterogeneity of node neighbors with different resolutions and yields more reliable message passing. More importantly, to explore the task-related structured information of WSI pyramid, we elaborately design a novel iterative hierarchical pooling (IHPool) module to progressively aggregate the heterogeneous graph based on scaling relationships of different nodes. We evaluated our method on two public WSI datasets from the TCGA project, i.e., esophageal cancer and kidney cancer. Experimental results show that our method clearly outperforms the state-of-the-art methods on both tumor typing and staging tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大牛顿发布了新的文献求助10
刚刚
黑猫发布了新的文献求助10
1秒前
meina发布了新的文献求助10
1秒前
科目三应助科学家采纳,获得10
1秒前
1秒前
1秒前
1秒前
GET发布了新的文献求助10
1秒前
5552222发布了新的文献求助10
1秒前
1秒前
Lucas应助无私的凌丝采纳,获得10
1秒前
Orange应助牛牛采纳,获得10
2秒前
scl完成签到,获得积分10
2秒前
YIQI发布了新的文献求助10
2秒前
zhenzhen发布了新的文献求助10
3秒前
张萌发布了新的文献求助10
3秒前
上官若男应助元友容采纳,获得10
4秒前
xxx发布了新的文献求助30
4秒前
5秒前
wanci应助蓝桉采纳,获得30
5秒前
1111111发布了新的文献求助10
5秒前
5秒前
李薇完成签到,获得积分10
6秒前
姑苏城外完成签到,获得积分10
7秒前
秋秋发布了新的文献求助10
8秒前
YifanWang应助ffffff采纳,获得20
8秒前
woshiwuziq发布了新的文献求助10
9秒前
YY完成签到,获得积分10
10秒前
毛豆应助meina采纳,获得10
11秒前
小芳应助KEHUGE采纳,获得50
11秒前
焕颜完成签到,获得积分20
12秒前
完美世界应助msk采纳,获得10
12秒前
13秒前
1111111完成签到,获得积分10
14秒前
Wangyn完成签到,获得积分10
14秒前
幸福面包完成签到,获得积分10
14秒前
15秒前
持卿发布了新的文献求助10
15秒前
盼盼527完成签到,获得积分10
15秒前
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309071
求助须知:如何正确求助?哪些是违规求助? 2942413
关于积分的说明 8508810
捐赠科研通 2617447
什么是DOI,文献DOI怎么找? 1430137
科研通“疑难数据库(出版商)”最低求助积分说明 664044
邀请新用户注册赠送积分活动 649236