材料科学
电解质
硫化物
化学工程
电池(电)
复合数
固态
快离子导体
冶金
复合材料
化学
电极
功率(物理)
物理
物理化学
量子力学
工程类
作者
Yong Su,Xuedong Zhang,Congcong Du,Yang Luo,Jingzhao Chen,Jitong Yan,Dingding Zhu,Lin Geng,Shuangxu Liu,Jun Zhao,Yanshuai Li,Zhaoyu Rong,Qing Huang,Liqiang Zhang,Yongfu Tang,Jianyu Huang
出处
期刊:Small
[Wiley]
日期:2022-06-23
卷期号:18 (29)
被引量:58
标识
DOI:10.1002/smll.202202069
摘要
Replacing liquid electrolytes with solid polymer electrolytes (SPEs) is considered as a vital approach to developing sulfur (S)-based cathodes. However, the polysulfides shuttle and the growth of lithium (Li) dendrites are still the major challenges in polyethylene oxide (PEO)-based electrolyte. Here, an all-solid-state Li metal battery with flexible PEO-Li10 Si0.3 PS6.7 Cl1.8 (LSPSCl)-C-lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) composite cathode (FCC) and PEO-LSPSCl-LiTFSI composite electrolyte (S-CPE) is designed. The initial capacity of the Li|S-CPE|FCC battery is 414 mAh g-1 with 97.8% capacity retention after 100 cycles at 0.1 A g-1 . Moreover, the battery displays remarkable capacity retention of 80% after 500 cycles at 0.4 A g-1 . Cryo-transmission electron microscopy (Cryo-TEM) reveals rich large-sized Li2 CO3 particles at the Li/PEO interface blocking the Li+ transport, but the layer with rich Li2 O nanocrystals, amorphous LiF and Li2 S at the Li/S-CPE interface suppresses the growth of lithium dendrite and stabilizes the interface. In situ optical microscopy demonstrates that the excellent cyclic stability of FCC is ascribed to the reversible shuttle of P-S-P species, resulting from the movement of ether backbone in PEO. This study provides strategies to mitigate the polysulfide shuttle effect and Li dendrite formation in designing high energy density solid-state Li-S-based batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI