An Online Prognostic Application for Melanoma Based on Machine Learning and Statistics

医学 机器学习 计算器 随机森林 一致性 接收机工作特性 人工智能 生存分析 统计 外科 内科学 计算机科学 数学 操作系统
作者
Wenhui Liu,Ying Zhu,Chong Lin,Linbo Liu,Guangshuai Li
出处
期刊:Journal of Plastic Reconstructive and Aesthetic Surgery [Elsevier]
卷期号:75 (10): 3853-3858 被引量:6
标识
DOI:10.1016/j.bjps.2022.06.069
摘要

Background Melanoma is a common cancer that causes a severe socioeconomic burden. Patients usually turn to plastic surgeons to determine their prognosis after surgery. Methods Data from hundreds of thousands of real-world patients were downloaded from the Surveillance, Epidemiology, and End Results database. Nine mainstream machine learning models were applied to predict 5-year survival probability and three survival analysis models for overall survival prediction. Models that outperformed were deployed online. Results After manual review, 156,154 real-world patients were included. The deep learning model was chosen for predicting the probability of 5-year survival, based on its area under the receiver operating characteristic curve (0.915) and its accuracy (84.8%). The random survival forest model was chosen for predicting overall survival, with a concordance index of 0.894. These models were deployed at www.make-a-difference.top/melanoma.html as an online calculator with an interactive interface and an explicit outcome for everyone. Conclusions Users should make decisions based on not only this online prognostic application but also multidimensional information and consult with multidiscipline specialists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ziptip发布了新的文献求助10
刚刚
1秒前
Bowen完成签到,获得积分10
1秒前
2秒前
2秒前
慕青应助魄魄olm采纳,获得10
2秒前
木木发布了新的文献求助10
3秒前
科研通AI6应助天才玩家H采纳,获得20
3秒前
Uu发布了新的文献求助10
3秒前
科研通AI6应助未雨采纳,获得10
3秒前
今后应助wuyy采纳,获得10
5秒前
6秒前
6秒前
6秒前
于跃发布了新的文献求助10
7秒前
Xx完成签到 ,获得积分10
7秒前
歪比巴卜发布了新的文献求助20
7秒前
8秒前
WA完成签到,获得积分10
8秒前
8秒前
8秒前
念梦发布了新的文献求助10
8秒前
9秒前
隐形曼青应助一颗小花生采纳,获得10
10秒前
濯枝雨完成签到,获得积分10
10秒前
artoria完成签到,获得积分10
10秒前
科研通AI2S应助Z赵采纳,获得10
10秒前
10秒前
刘小姐完成签到,获得积分10
10秒前
酷波er应助danielsong采纳,获得10
10秒前
10秒前
11秒前
11秒前
11秒前
11秒前
传奇3应助叮叮当采纳,获得10
12秒前
司空元正发布了新的文献求助10
12秒前
过时的画板完成签到,获得积分10
13秒前
风趣冰棍发布了新的文献求助10
13秒前
13秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5581693
求助须知:如何正确求助?哪些是违规求助? 4665895
关于积分的说明 14759417
捐赠科研通 4607833
什么是DOI,文献DOI怎么找? 2528395
邀请新用户注册赠送积分活动 1497666
关于科研通互助平台的介绍 1466553