材料科学
杰纳斯
光热治疗
纳米技术
液态金属
金属
复合材料
化学工程
冶金
工程类
作者
Yajie Hu,Xiang Hao,Gegu Chen,Jing Bian,Ming‐Fei Li,Feng Peng
标识
DOI:10.1021/acsami.2c04796
摘要
Downsizing bulk liquid metals (LM) at the nanometer scale with biocompatibility and multifunction is a key process for electronic or medical applications. Here, we report a stable and green LM aqueous colloidal ink by wrapping eutectic gallium-indium alloys (EGaIn) with carboxymethyl glucomannan (CGM) derived from radiata pine chip, which is capable of being prepared into a free-standing, photothermal-actuating, and motion-monitoring Janus film. With the assistance of CGM, the bulk EGaIn was ultrasonicated into stable nanodroplets (∼500 nm) with a typical "core-shell" structure, in which the colloidal inks can be stored for more than 1 week under room temperature. The stable CGM/EGaIn inks can be patterned on different substrates to form coating layers or self-assembled into free-standing Janus films with high mechanical strength and modulus (∼94 MPa and ∼3.8 GPa) by density deposition. Such a Janus film with anisotropic thermal conductivity made it a potential photothermal actuator. In addition, the biocompatible film demonstrated both high conductivity and large resistance variation in response to strain change (gauge factor >500), allowing for human motion monitoring. This work provides a new prospect for the development of biocompatible and high-performance nano-LM materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI