Machine Learning Screening of Efficient Ionic Liquids for Targeted Cleavage of the β–O–4 Bond of Lignin

木质素 离子液体 催化作用 化学 愈创木酚 键裂 劈理(地质) 离解(化学) 组合化学 有机化学 材料科学 复合材料 断裂(地质)
作者
Wei‐Lu Ding,Tao Zhang,Yanlei Wang,Jiayu Xin,Xiao Yuan,Lin Ji,Hongyan He
出处
期刊:Journal of Physical Chemistry B [American Chemical Society]
卷期号:126 (20): 3693-3704 被引量:9
标识
DOI:10.1021/acs.jpcb.1c10684
摘要

Lignin conversion into high value-added chemicals is of great significance for maximizing the use of renewable energy. Ionic liquids (ILs) have been widely used for targeted cleavage of the C–O bonds of lignin due to their high catalytic activity. Studying the cleavage activity of each IL is impossible and time-consuming, given the huge number of cations and anions. Currently, the mainstream approach to determining the cleavage activity of one IL is to calculate the activation barrier energy (Ea) theoretically via transition state search, a process that involves the iterative determination of an appropriate "imaginary frequency". Machine learning (ML) has been widely used for catalyst design and screening, enabling accurate mapping from specified descriptors to target properties. To avoid complicated Ea calculations and to screen potential candidates, in this study, we selected nearly 103 ILs and guaiacylglycerol-β-guaiacyl ether (GG) as the lignin model and used the ML technology to train models that can rapidly predict the cleavage activity of ILs. Taking the easily accessible bond dissociation energy (BDE) of the β–O–4 bond in GG as the target, an ML model with r > 0.93 for predicting the catalytic activity of ILs was obtained. The change tendency of the BDE is consistent with the experimental yield of guaiacol, reflecting the reliability of the ML model. Finally, [C2MIM][Tyrosine] and [C3MIM][Tyrosine] as the optimal candidates for future applications were screened out. This is a novel strategy for predicting the catalytic activity of ILs on lignin without the need to calculate complicated reaction pathways while reducing time consumption. It is anticipated that the ML model can be utilized in future practical applications for targeted cleavage of lignin.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
贱小贱完成签到,获得积分10
2秒前
3秒前
贾晨鹤发布了新的文献求助10
3秒前
搞怪的溪灵完成签到 ,获得积分10
4秒前
4秒前
bkagyin应助QY采纳,获得10
5秒前
psybrain9527完成签到,获得积分10
7秒前
7秒前
7秒前
tanhaowen完成签到 ,获得积分10
8秒前
JUGG发布了新的文献求助10
9秒前
zho发布了新的文献求助10
11秒前
11秒前
醒醒完成签到,获得积分10
12秒前
wen完成签到,获得积分10
13秒前
酷波er应助调皮便当采纳,获得10
14秒前
15秒前
遇到苦难不要慌完成签到,获得积分10
15秒前
18秒前
18秒前
yyr完成签到,获得积分20
19秒前
Laisy完成签到,获得积分10
19秒前
lsx完成签到,获得积分10
20秒前
anne完成签到 ,获得积分10
21秒前
666发布了新的文献求助10
22秒前
小云完成签到,获得积分10
22秒前
yyr发布了新的文献求助30
23秒前
小龙发布了新的文献求助10
23秒前
聪明飞飞完成签到,获得积分10
23秒前
24秒前
24秒前
leoskrrr完成签到,获得积分10
24秒前
JUGG完成签到,获得积分10
25秒前
有魅力的书本完成签到 ,获得积分10
26秒前
互助遵法尚德应助yyr采纳,获得10
28秒前
小炮仗完成签到 ,获得积分10
28秒前
科研通AI2S应助victor采纳,获得10
28秒前
30秒前
allrubbish发布了新的文献求助10
31秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165214
求助须知:如何正确求助?哪些是违规求助? 2816237
关于积分的说明 7911970
捐赠科研通 2475937
什么是DOI,文献DOI怎么找? 1318452
科研通“疑难数据库(出版商)”最低求助积分说明 632155
版权声明 602388