Machine Learning Screening of Efficient Ionic Liquids for Targeted Cleavage of the β–O–4 Bond of Lignin

木质素 离子液体 催化作用 化学 愈创木酚 键裂 劈理(地质) 离解(化学) 组合化学 有机化学 材料科学 复合材料 断裂(地质)
作者
Wei‐Lu Ding,Tao Zhang,Yanlei Wang,Jiayu Xin,Xiao Yuan,Lin Ji,Hongyan He
出处
期刊:Journal of Physical Chemistry B [American Chemical Society]
卷期号:126 (20): 3693-3704 被引量:9
标识
DOI:10.1021/acs.jpcb.1c10684
摘要

Lignin conversion into high value-added chemicals is of great significance for maximizing the use of renewable energy. Ionic liquids (ILs) have been widely used for targeted cleavage of the C–O bonds of lignin due to their high catalytic activity. Studying the cleavage activity of each IL is impossible and time-consuming, given the huge number of cations and anions. Currently, the mainstream approach to determining the cleavage activity of one IL is to calculate the activation barrier energy (Ea) theoretically via transition state search, a process that involves the iterative determination of an appropriate "imaginary frequency". Machine learning (ML) has been widely used for catalyst design and screening, enabling accurate mapping from specified descriptors to target properties. To avoid complicated Ea calculations and to screen potential candidates, in this study, we selected nearly 103 ILs and guaiacylglycerol-β-guaiacyl ether (GG) as the lignin model and used the ML technology to train models that can rapidly predict the cleavage activity of ILs. Taking the easily accessible bond dissociation energy (BDE) of the β–O–4 bond in GG as the target, an ML model with r > 0.93 for predicting the catalytic activity of ILs was obtained. The change tendency of the BDE is consistent with the experimental yield of guaiacol, reflecting the reliability of the ML model. Finally, [C2MIM][Tyrosine] and [C3MIM][Tyrosine] as the optimal candidates for future applications were screened out. This is a novel strategy for predicting the catalytic activity of ILs on lignin without the need to calculate complicated reaction pathways while reducing time consumption. It is anticipated that the ML model can be utilized in future practical applications for targeted cleavage of lignin.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
punctuation发布了新的文献求助10
1秒前
keyanzhazha给keyanzhazha的求助进行了留言
1秒前
在阳光下完成签到 ,获得积分10
2秒前
在水一方应助夏末采纳,获得10
2秒前
SYLH应助morning采纳,获得10
3秒前
3秒前
风趣谷槐完成签到,获得积分10
3秒前
Whim应助会撒娇的惜蕊采纳,获得30
4秒前
科研通AI5应助称心寒松采纳,获得10
5秒前
li完成签到,获得积分10
6秒前
科研通AI5应助三旬采纳,获得10
7秒前
舒适乐儿发布了新的文献求助10
8秒前
平常的玲完成签到,获得积分20
8秒前
科研小秦完成签到,获得积分10
10秒前
10秒前
肉丸完成签到 ,获得积分10
11秒前
Vincy发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
13秒前
arrow13完成签到,获得积分10
14秒前
conghuang发布了新的文献求助10
16秒前
李健的粉丝团团长应助owl采纳,获得10
16秒前
小马甲应助王羊补牢采纳,获得10
16秒前
16秒前
16秒前
dmj发布了新的文献求助10
18秒前
18秒前
天天完成签到,获得积分10
19秒前
20秒前
20秒前
大模型应助1111采纳,获得60
20秒前
称心寒松发布了新的文献求助10
21秒前
大饼卷肉完成签到,获得积分10
21秒前
ZZZZ发布了新的文献求助10
21秒前
21秒前
一朵会长树的花完成签到,获得积分10
22秒前
FashionBoy应助123采纳,获得10
22秒前
conghuang完成签到,获得积分10
22秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740949
求助须知:如何正确求助?哪些是违规求助? 3283763
关于积分的说明 10036623
捐赠科研通 3000513
什么是DOI,文献DOI怎么找? 1646539
邀请新用户注册赠送积分活动 783771
科研通“疑难数据库(出版商)”最低求助积分说明 750427