Photocatalysis coupling hydrogen peroxide synthesis and in-situ radical transform for tetracycline degradation

光催化 原位 降级(电信) 催化作用 四环素 过氧化氢 化学 联轴节(管道) 光化学 材料科学 有机化学 计算机科学 冶金 电信 生物化学 抗生素
作者
Zaixiang Xu,Si-Yan Gong,Wenkai Ji,Shijie Zhang,Zhikang Bao,Zijiang Zhao,Zhongzhe Wei,Xing Zhong,Zhong-Ting Hu,Jianguo Wang
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:446: 137009-137009 被引量:23
标识
DOI:10.1016/j.cej.2022.137009
摘要

• A novel nanorod-like C 3 N 4 photocatalyst with alkali modification is synthesized. • TC degradation system namely in-situ H 2 O 2 generation/radical transform is built up. • H 2 O 2 generation is enhanced by consuming hole based on adsorbed organic molecules. • Mechanism on TC degradation system employed C 3 N 4 photocatalyst is elucidated. Although much effort has been put into hydrogen peroxide (H 2 O 2 ) synthesis, multifunctional catalytic systems suitable for in-situ H 2 O 2 utilization in the field have rarely been investigated. In this study, carbon nitride nanorod (GCN-Rod) is designed to couple H 2 O 2 generating and activation for efficient environment remediation. The limitation of the sluggish hole oxidation kinetics during the photocatalytic H 2 O 2 production is overcome by oxidation of electrostatically adsorbed contaminant molecules. Acid-activated carbon nitride nanorod binds a large number of protons onto the surface, forming an acidic micro-environment prone to protonating organic molecules into positively charged molecules and adsorbed on the negative zeta-potential catalyst surface for oxidation reactions. The in situ synthesized H 2 O 2 is confirmed to be the origin of reactive oxygen species by EPR and band position analysis. The photocatalytic tetracycline (10 ppm) degradation ability approaches approximately 100 % within 10 min under visible-light irradiation. Cycle tests also demonstrated sufficient stability. This work achieves a delicate coupling of H 2 O 2 production and in-situ utilization, which is sufficient for continuous pollutant degradation, expanding the catalyst design methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助scott910806采纳,获得10
1秒前
在水一方应助小白菜采纳,获得10
1秒前
pine完成签到,获得积分10
2秒前
3秒前
英姑应助wa采纳,获得10
4秒前
火星上的绿蕊完成签到,获得积分10
4秒前
YH发布了新的文献求助10
6秒前
7秒前
Ww发布了新的文献求助10
8秒前
酷波er应助罗是一采纳,获得10
8秒前
小燕子发布了新的文献求助10
8秒前
田様应助啦啦啦采纳,获得10
9秒前
9秒前
10秒前
苗条凡完成签到 ,获得积分10
11秒前
11秒前
852应助晓森采纳,获得10
13秒前
zhoutian发布了新的文献求助10
15秒前
YH完成签到,获得积分10
15秒前
小于完成签到,获得积分10
15秒前
16秒前
Chenyan775199发布了新的文献求助10
16秒前
17秒前
徐hhh完成签到 ,获得积分10
17秒前
18秒前
雪白胡萝卜完成签到 ,获得积分10
18秒前
罗是一发布了新的文献求助10
19秒前
啦啦啦啦啦完成签到,获得积分10
19秒前
可爱的函函应助ZHY2023采纳,获得10
19秒前
白鸽应助大气的二娘采纳,获得10
19秒前
希望天下0贩的0应助XinX采纳,获得10
20秒前
21秒前
22秒前
酷波er应助子非鱼采纳,获得10
22秒前
遇见发布了新的文献求助10
22秒前
yzw发布了新的文献求助10
22秒前
AOI0504完成签到,获得积分10
22秒前
23秒前
星辰大海应助zhoutian采纳,获得10
23秒前
细腻的梦之完成签到,获得积分10
23秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136013
求助须知:如何正确求助?哪些是违规求助? 2786835
关于积分的说明 7779716
捐赠科研通 2443045
什么是DOI,文献DOI怎么找? 1298822
科研通“疑难数据库(出版商)”最低求助积分说明 625232
版权声明 600870