Trend attention fully convolutional network for remaining useful life estimation

估计 计算机科学 卷积神经网络 统计 可靠性工程 人工智能 工程类 数学 系统工程
作者
Linchuan Fan,Yi Chai,Xiaolong Chen
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:225: 108590-108590 被引量:70
标识
DOI:10.1016/j.ress.2022.108590
摘要

Modern engineered systems usually employ multiple sensors to monitor equipment health status. However, most remaining useful life (RUL) estimation methods based on deep learning are hard to select helpful signals and remove useless signals accurately. Moreover, the attention mechanisms they employed could hardly obtain an optimal attention distribution at an acceptable computational cost, resulting in poor prediction performance. Therefore, we proposed a novel signal selection method, terming the ”Loss boundary to Mapping ability” (LM) approach. It can accurately select the signals that can contribute to RUL prediction tasks. Then, inspired by the characteristics of RUL monitoring signals, we proposed a novel end-to-end framework called Trend attention Fully Convolutional Network (TaFCN) to enhance prediction performance further. These two methods constitute our prognostic method. We conducted a series of ablation experiments and comparative experiments with recent methods on the C-MAPSS turbofan engine dataset. The ablation experiments proved the necessity and advanced performance of the LM and the proposed attention mechanism employed in the TaFCN. The comparative experiments demonstrated the state-of-the-art performance of our prognostic method. Furthermore, we developed an interpretability analysis method, which revealed the logical reasoning process of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助糊涂的汽车采纳,获得10
刚刚
一线西风发布了新的文献求助10
刚刚
hanhanhan发布了新的文献求助50
刚刚
AJ发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
1秒前
kkkhhh发布了新的文献求助10
2秒前
天天快乐应助SEV采纳,获得10
2秒前
悦耳安莲完成签到,获得积分20
2秒前
传奇3应助张123采纳,获得10
2秒前
zgh5615完成签到,获得积分10
2秒前
Taki发布了新的文献求助10
2秒前
星辰大海应助Duxize采纳,获得10
4秒前
4秒前
5秒前
cj发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
7秒前
7秒前
8秒前
9秒前
开心夏旋完成签到,获得积分10
9秒前
嘞是举仔应助专注的草丛采纳,获得20
10秒前
好好好完成签到,获得积分10
10秒前
洁净如音完成签到,获得积分10
10秒前
wheeler1发布了新的文献求助10
10秒前
浮云发布了新的文献求助30
11秒前
11秒前
11秒前
Redamancy完成签到,获得积分10
12秒前
盒子完成签到,获得积分20
12秒前
开心夏旋发布了新的文献求助10
13秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
15秒前
15秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695511
求助须知:如何正确求助?哪些是违规求助? 5102149
关于积分的说明 15216311
捐赠科研通 4851790
什么是DOI,文献DOI怎么找? 2602705
邀请新用户注册赠送积分活动 1554389
关于科研通互助平台的介绍 1512420