Trend attention fully convolutional network for remaining useful life estimation

可解释性 过程(计算) 计算机科学 涡扇发动机 机器学习 信号(编程语言) 数据挖掘 人工智能 工程类 操作系统 汽车工程 程序设计语言
作者
Linchuan Fan,Yi Chai,Xiaolong Chen
出处
期刊:Reliability Engineering & System Safety [Elsevier BV]
卷期号:225: 108590-108590 被引量:45
标识
DOI:10.1016/j.ress.2022.108590
摘要

Modern engineered systems usually employ multiple sensors to monitor equipment health status. However, most remaining useful life (RUL) estimation methods based on deep learning are hard to select helpful signals and remove useless signals accurately. Moreover, the attention mechanisms they employed could hardly obtain an optimal attention distribution at an acceptable computational cost, resulting in poor prediction performance. Therefore, we proposed a novel signal selection method, terming the ”Loss boundary to Mapping ability” (LM) approach. It can accurately select the signals that can contribute to RUL prediction tasks. Then, inspired by the characteristics of RUL monitoring signals, we proposed a novel end-to-end framework called Trend attention Fully Convolutional Network (TaFCN) to enhance prediction performance further. These two methods constitute our prognostic method. We conducted a series of ablation experiments and comparative experiments with recent methods on the C-MAPSS turbofan engine dataset. The ablation experiments proved the necessity and advanced performance of the LM and the proposed attention mechanism employed in the TaFCN. The comparative experiments demonstrated the state-of-the-art performance of our prognostic method. Furthermore, we developed an interpretability analysis method, which revealed the logical reasoning process of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助tianyy采纳,获得10
刚刚
雪落发布了新的文献求助10
刚刚
LICHT完成签到,获得积分10
刚刚
科研通AI2S应助虹虹采纳,获得10
刚刚
ZhouYW发布了新的文献求助10
1秒前
1秒前
1秒前
浅色墨水发布了新的文献求助10
2秒前
2秒前
3秒前
4秒前
李爱国应助外向烤鸡采纳,获得10
5秒前
5秒前
852应助方三问采纳,获得10
6秒前
7秒前
情怀应助没有腹肌的龙虾采纳,获得30
7秒前
lsc完成签到,获得积分20
7秒前
7秒前
blawxx发布了新的文献求助10
7秒前
小刘发布了新的文献求助10
7秒前
花花完成签到 ,获得积分10
8秒前
calm完成签到,获得积分10
8秒前
8秒前
9秒前
cxc发布了新的文献求助10
9秒前
123123123完成签到,获得积分10
9秒前
10秒前
zhijianzhe完成签到,获得积分20
10秒前
熊二完成签到,获得积分10
10秒前
10秒前
Ana完成签到,获得积分10
10秒前
10秒前
wangjunhao发布了新的文献求助10
10秒前
丘比特应助怡然的代玉采纳,获得10
10秒前
充电宝应助fusheng采纳,获得10
11秒前
Chao123_完成签到,获得积分10
11秒前
12秒前
HP完成签到,获得积分10
12秒前
车轮滚滚完成签到,获得积分10
12秒前
13秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961496
求助须知:如何正确求助?哪些是违规求助? 3507837
关于积分的说明 11138394
捐赠科研通 3240311
什么是DOI,文献DOI怎么找? 1790903
邀请新用户注册赠送积分活动 872636
科研通“疑难数据库(出版商)”最低求助积分说明 803288