Crowd detection and estimation for an earthquake early warning system using deep learning

人群 自编码 计算机科学 人工智能 深度学习 利用 机器学习 计算机视觉 预警系统 计算机安全 电信
作者
Felipe I. Lamas,Katherine Duguet,Jorge E. Pezoa,Gonzalo A. Montalva,Sergio N. Torres,Weixiao Meng
标识
DOI:10.1117/12.2622392
摘要

Earthquakes, and their cascading threats to economic and social sustainability, are a common problem between China and Chile. In such emergencies, automatic image recognition systems have become critical tools for preventing and reducing civilian casualties. Human crowd detection and estimation are fundamental for automatic recognition under life-threatening natural disasters. However, detecting and estimating crowds in scenes is nontrivial due to occlusion, complex behaviors, posture changes, and camera angles, among other issues. This paper presents the first steps in developing an intelligent Earthquake Early Warning System (EEWS) between China and Chile. The EEWS exploits the ability of deep learning architectures to properly model different spatial scales of people and the varying degrees of crowd densities. We propose an autoencoder architecture for crowd detection and estimation because it creates compressed representations for the original crowd input images in its latent space. The proposed architecture considers two cascaded autoencoders. The first performs reconstructive masking of the input images, while the second generates Focal Inverse Distance Transform (FIDT) maps. Thus, the cascaded autoencoders improve the ability of the network to locate people and crowds, thereby generating high-quality crowd maps and more reliable count estimates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
33完成签到 ,获得积分10
刚刚
酷波er应助高贵路灯采纳,获得10
刚刚
Aten完成签到,获得积分10
刚刚
领导范儿应助科研通管家采纳,获得10
刚刚
刚刚
明理楷瑞完成签到,获得积分10
刚刚
云舒应助科研通管家采纳,获得40
刚刚
SYLH应助科研通管家采纳,获得20
刚刚
思源应助科研通管家采纳,获得50
刚刚
Linda完成签到 ,获得积分10
刚刚
SYLH应助科研通管家采纳,获得20
1秒前
英姑应助科研通管家采纳,获得10
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
wisdom应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
64658应助科研通管家采纳,获得10
1秒前
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
酷炫翠桃应助科研通管家采纳,获得10
1秒前
雷雨泽石完成签到,获得积分10
1秒前
1秒前
1秒前
Bonnie完成签到 ,获得积分20
2秒前
海风发布了新的文献求助10
2秒前
3秒前
燃燃完成签到 ,获得积分10
3秒前
3秒前
4秒前
4秒前
。。。完成签到,获得积分10
4秒前
奥特超曼应助ark861023采纳,获得10
4秒前
AAA电池批发顾总完成签到,获得积分10
6秒前
clocksoar完成签到,获得积分10
6秒前
jojodan完成签到,获得积分10
6秒前
3366完成签到,获得积分10
6秒前
6秒前
7秒前
沧海应助Aten采纳,获得10
7秒前
7秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582