化学
聚合
降级(电信)
污染物
价(化学)
结晶度
锰
环境化学
无机化学
碳纤维
化学工程
材料科学
聚合物
有机化学
结晶学
复合材料
复合数
计算机科学
工程类
电信
作者
Yangyang Yang,Panpan Zhang,Kunsheng Hu,Peng Zhou,Yuxian Wang,Abdul Hannan Asif,Xiaoguang Duan,Hongqi Sun,Shaobin Wang
标识
DOI:10.1016/j.apcatb.2022.121593
摘要
Various MnO x phases and crystals were investigated in peroxymonosulfate (PMS) activation for oxidation of aqueous phenolic pollutants. MnO x with controlled crystal structure (α, β, γ, and amorphous-MnO 2 ) and redox states (Mn 2 O 3 , and MnO) can induce different oxidative pathways toward organic polymerization against degradation in acidic conditions. Surface Mn Ⅱ (s) and Mn Ⅲ (s) of MnO x tend to bond with PMS to generate confined Mn (Ⅱ, Ⅲ) (s) − (HO)OSO 3 − complexes to initiate a nonradical electron-transfer pathway (ETP). Meanwhile, high-valence Mn Ⅳ (s) in MnO x will directly attack micropollutants and spontaneously be reduced to low-valence states (Mn Ⅱ (s) and Mn Ⅲ (s) ) to initiate ETP. Mn 2 O 3 can activate PMS to generate other radical species for mineralization. ETP will selectively initiate one-electron abstraction of phenol molecules into monomer phenoxy radicals and polyphenols on catalyst surface. Thus, manganese crystal structures will govern the surface redox species to induce multiple oxidation pathways toward different polymer products for water decontamination and carbon recycle. • MnO x catalysts induce organic polymerization/degradation by peroxymonosulfate (PMS). • Crystallinity and valence states of MnO x determine the reaction mechanism and routes. • Low valent Mn species tend to cause electron-transfer pathways (ETPs). • ETPs were responsible for the polymerization while radicals for degradation.
科研通智能强力驱动
Strongly Powered by AbleSci AI