Study on the Evolution, Driving Factors, and Regional Comparison of Innovation Patterns in the Yangtze River Delta

城市群 经济地理学 驱动因素 基尼系数 背景(考古学) 三角洲 业务 集聚经济 索引(排版) 质量(理念) 地理 区域科学 中国 经济增长 经济 不平等 计算机科学 哲学 航空航天工程 数学 考古 万维网 经济不平等 数学分析 工程类 认识论
作者
Dongsheng Yan,Wei Sun
出处
期刊:Land [Multidisciplinary Digital Publishing Institute]
卷期号:11 (6): 876-876 被引量:2
标识
DOI:10.3390/land11060876
摘要

The differences in innovation, and the resulting inefficient allocation of innovation resources, are key factors affecting the high-quality development of urban agglomerations. In the context of China’s upgrading of the integrated development of the Yangtze River Delta (YRD) to a national strategy, the study of innovation patterns and driving factors in this highly developed urban agglomeration provide references and experiences for high-quality development and innovation improvements in other urban agglomerations. Using prefecture-level patent data from 2000 to 2018, this study analyses the evolution characteristics of the innovation patterns in the YRD, from the perspective of innovation level and innovation growth, based on the coefficient of variation, locational Gini coefficient, and the relative development rate index. Then, using the knowledge production function, this study quantitatively explores the driving factors for innovation from multiple perspectives. The main findings are as follows. The differences in urban innovation levels decrease with improvements in the innovation level of urban agglomerations. In terms of the evolution of the spatial pattern of innovation levels, the “core–periphery” and “south–north” differences are highly stable; however, the innovation levels of some peripherical cities improve. The growth of urban innovation levels show significant regional differences, with fast-growing cities clustered in the core area, and high-value areas characterized by proximity diffusion. Based on the innovation level in different periods, cities are divided into low–low, low–high, high–low, and high–high types. There are spatio–temporal differences in the driving factors for innovation. On the one hand, different periods show an intensification of factor inputs and external linkage effects, as well as the differentiation of urban development state effects. On the other hand, there are differences among different types of cities, with low–low cities mainly driven by factor inputs, urban development state, and internal opening-up; low–high and high–high cities are greatly influenced by factor inputs and urban development state. By expanding on existing studies, the present research provides a refined reference for the formulation of scientific policies aimed at promoting innovation development in China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
康康完成签到 ,获得积分10
1秒前
番茄酱完成签到 ,获得积分10
3秒前
张狗蛋完成签到 ,获得积分10
3秒前
NOBODY完成签到,获得积分10
3秒前
自信的竹员外完成签到,获得积分10
4秒前
星星完成签到,获得积分10
4秒前
asdfghjkl完成签到,获得积分10
5秒前
6秒前
zzuzjx完成签到,获得积分20
6秒前
呜呼完成签到,获得积分10
6秒前
田様应助zinc采纳,获得10
7秒前
7秒前
7秒前
最棒哒完成签到 ,获得积分10
8秒前
abandon发布了新的文献求助10
12秒前
12秒前
含蓄嫣然完成签到,获得积分10
13秒前
Jerry完成签到,获得积分10
13秒前
辛勤雨泽发布了新的文献求助10
13秒前
17秒前
Master_Ye发布了新的文献求助10
17秒前
向阳而生发布了新的文献求助10
18秒前
20秒前
20秒前
小二郎应助辛勤雨泽采纳,获得10
20秒前
abandon完成签到,获得积分10
23秒前
Avatar发布了新的文献求助10
23秒前
Scinature发布了新的文献求助10
25秒前
27秒前
彭于晏应助Cattledog采纳,获得10
27秒前
ys完成签到 ,获得积分10
29秒前
小唐尼完成签到,获得积分10
29秒前
Avatar完成签到,获得积分10
30秒前
凤梨发布了新的文献求助10
30秒前
Sunnig盈完成签到,获得积分10
31秒前
安静远航完成签到,获得积分10
32秒前
蟹浦肉完成签到,获得积分10
32秒前
向阳而生完成签到,获得积分20
32秒前
32秒前
Lucas应助Master_Ye采纳,获得10
33秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
Indomethacinのヒトにおける経皮吸収 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3997679
求助须知:如何正确求助?哪些是违规求助? 3537190
关于积分的说明 11270985
捐赠科研通 3276344
什么是DOI,文献DOI怎么找? 1806900
邀请新用户注册赠送积分活动 883582
科研通“疑难数据库(出版商)”最低求助积分说明 809975