亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning techniques to identify and classify COVID-19 abnormalities on chest x-ray images

深度学习 卷积神经网络 人工智能 计算机科学 肺炎 2019年冠状病毒病(COVID-19) 分割 机器学习 大流行 图像分割 鉴定(生物学) 人工神经网络 胸痛 模式识别(心理学) 医学 疾病 病理 内科学 传染病(医学专业) 植物 生物
作者
Abdussalam Elhanashi,Duncan Lowe,Sergio Saponara,Yashar Moshfeghi
标识
DOI:10.1117/12.2618762
摘要

The new coronavirus disease (COVID-19) comprises the public health systems around the world. The number of infected people and deaths are escalating day-to-day, which puts enormous pressure on healthcare systems. COVID-19 symptoms include fatigue, cough, and fever. These symptoms are also diagnosed for other pneumonia, which creates complications in identifying COVID-19, especially throughout the influenza season. The rise of the COVID-19 pandemic among individuals has made it essential to improve medical image screening of this pneumonia. Rapid identification is a necessary step to stop the spread of this virus and plays a vital role in early detection. With this as a motivator, we applied deep learning techniques to diagnose the coronavirus using chest X-ray images and to implement a robust AI application to classify COVID-19 pneumonia from non-COVID-19 for the respiratory system in these images. This paper proposes different deep learning algorithms, including classification and segmentation methods. By taking advantage of convolutional neural network models, we exploited different pre-trained deep learning models such as (ResNet50, ResNet101, VGG-19, and U-Net architectures) to extract features from chest X-ray images. Four datasets of chest X-ray images have been employed to assess the performance of the proposed methods. These datasets have been split into 80% for training and 20% for validation of the architectures. The experimental results showed an overall accuracy of 99.42% for the classification and 93% for segmentation approaches. The proposed approaches can help radiologists and medical specialists to identify the insights of infected regions for the respiratory system in the early stages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助daiyu采纳,获得10
1秒前
小龙完成签到,获得积分10
10秒前
43秒前
bing完成签到 ,获得积分10
57秒前
小常发布了新的文献求助30
1分钟前
领导范儿应助蛋蛋采纳,获得10
1分钟前
2分钟前
长安完成签到,获得积分10
2分钟前
丘比特应助长安采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
艺霖大王完成签到,获得积分10
3分钟前
FashionBoy应助艺霖大王采纳,获得10
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
英俊的铭应助科研通管家采纳,获得10
3分钟前
3分钟前
4分钟前
长安发布了新的文献求助10
4分钟前
烟烟烟发布了新的文献求助10
4分钟前
烟烟烟完成签到,获得积分20
5分钟前
5分钟前
6分钟前
6分钟前
桃子爱学习完成签到 ,获得积分10
6分钟前
7分钟前
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
8分钟前
8分钟前
kingcoffee完成签到 ,获得积分10
8分钟前
8分钟前
艺霖大王发布了新的文献求助10
8分钟前
冬去春来完成签到 ,获得积分10
8分钟前
lanxinge完成签到 ,获得积分20
8分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
体心立方金属铌、钽及其硼化物中滑移与孪生机制的研究 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3450450
求助须知:如何正确求助?哪些是违规求助? 3045935
关于积分的说明 9003716
捐赠科研通 2734577
什么是DOI,文献DOI怎么找? 1500058
科研通“疑难数据库(出版商)”最低求助积分说明 693318
邀请新用户注册赠送积分活动 691462