Energy consumption prediction for crude oil pipelines based on integrating mechanism analysis and data mining

管道(软件) 能源消耗 管道运输 人工神经网络 原油 能量(信号处理) 一致性(知识库) 工程类 消费(社会学) 预测建模 计算机科学 模拟 石油工程 人工智能 数据挖掘 机器学习 统计 环境工程 数学 机械工程 电气工程 社会科学 社会学
作者
Xinru Zhang,Lei Hou,Jiaquan Liu,Kai Yang,Chong Chai,Yanhao Li,Sichen He
出处
期刊:Energy [Elsevier]
卷期号:254: 124382-124382 被引量:17
标识
DOI:10.1016/j.energy.2022.124382
摘要

Accurate energy consumption prediction of crude oil pipeline is the basis for energy management and control optimization of oil transportation enterprises. The energy consumption of crude oil pipeline is affected by many factors, which is difficult to predict accurately by mechanism model. Machine learning model is not suitable for small samples and its results lack physical significance. In this paper, mechanism is integrated into machine learning model. A new physically guided neural network (PGNN) is proposed, which is established based on the physical modeling process of energy consumption prediction. The key physical intermediate variables affecting energy consumption are taken as artificial neurons and added to the loss function. The whale optimization algorithm is used to optimize the parameters of the model. A crude oil pipeline in Northeast China is taken as the prediction object to compare different models. The prediction accuracies of PGNN for electric energy consumption and fuel consumption are 2.54% and 4.36%, which are higher than other models. The prediction results of PGNN are more closely correlated with variables that directly affect energy consumption, which proves that PGNN has better physical consistency. In the case of small samples, PGNN has the least decline in accuracy. This study proves the feasibility of PGNN in energy consumption prediction of crude oil pipeline, and provides a new perspective for energy consumption prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
momo完成签到 ,获得积分10
1秒前
ding应助寻123采纳,获得10
2秒前
2秒前
3秒前
完美世界应助lv采纳,获得10
3秒前
半江发布了新的文献求助10
5秒前
弓雷雷完成签到,获得积分10
5秒前
石龙子发布了新的文献求助10
7秒前
8秒前
8秒前
11秒前
12秒前
12秒前
曾经若枫完成签到,获得积分10
12秒前
南小琴发布了新的文献求助10
13秒前
寻123发布了新的文献求助10
13秒前
Cathy完成签到,获得积分10
13秒前
Iris完成签到,获得积分10
14秒前
果实发布了新的文献求助10
15秒前
jinxuan发布了新的文献求助10
16秒前
cocolu应助半江采纳,获得10
16秒前
脑洞疼应助白鸽鸽采纳,获得10
17秒前
cmuren99完成签到,获得积分10
19秒前
科研通AI2S应助bole采纳,获得10
19秒前
Orange应助小青采纳,获得10
20秒前
21秒前
21秒前
科目三应助果实采纳,获得10
22秒前
半江完成签到,获得积分10
24秒前
24秒前
25秒前
LZX完成签到 ,获得积分10
28秒前
29秒前
干净青亦发布了新的文献求助10
29秒前
30秒前
31秒前
pcr163应助科研通管家采纳,获得80
31秒前
赘婿应助科研通管家采纳,获得10
31秒前
Akim应助科研通管家采纳,获得10
31秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3329501
求助须知:如何正确求助?哪些是违规求助? 2959146
关于积分的说明 8594396
捐赠科研通 2637597
什么是DOI,文献DOI怎么找? 1443667
科研通“疑难数据库(出版商)”最低求助积分说明 668794
邀请新用户注册赠送积分活动 656220