Energy consumption prediction for crude oil pipelines based on integrating mechanism analysis and data mining

管道(软件) 能源消耗 管道运输 人工神经网络 原油 能量(信号处理) 一致性(知识库) 工程类 消费(社会学) 预测建模 计算机科学 模拟 石油工程 人工智能 数据挖掘 机器学习 统计 环境工程 数学 机械工程 电气工程 社会科学 社会学
作者
Xinru Zhang,Lei Hou,Jiaquan Liu,Kai Yang,Chong Chai,Yanhao Li,Sichen He
出处
期刊:Energy [Elsevier BV]
卷期号:254: 124382-124382 被引量:17
标识
DOI:10.1016/j.energy.2022.124382
摘要

Accurate energy consumption prediction of crude oil pipeline is the basis for energy management and control optimization of oil transportation enterprises. The energy consumption of crude oil pipeline is affected by many factors, which is difficult to predict accurately by mechanism model. Machine learning model is not suitable for small samples and its results lack physical significance. In this paper, mechanism is integrated into machine learning model. A new physically guided neural network (PGNN) is proposed, which is established based on the physical modeling process of energy consumption prediction. The key physical intermediate variables affecting energy consumption are taken as artificial neurons and added to the loss function. The whale optimization algorithm is used to optimize the parameters of the model. A crude oil pipeline in Northeast China is taken as the prediction object to compare different models. The prediction accuracies of PGNN for electric energy consumption and fuel consumption are 2.54% and 4.36%, which are higher than other models. The prediction results of PGNN are more closely correlated with variables that directly affect energy consumption, which proves that PGNN has better physical consistency. In the case of small samples, PGNN has the least decline in accuracy. This study proves the feasibility of PGNN in energy consumption prediction of crude oil pipeline, and provides a new perspective for energy consumption prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Huang完成签到,获得积分10
刚刚
自信南霜完成签到 ,获得积分10
刚刚
情怀应助Jenny采纳,获得10
3秒前
15122303完成签到,获得积分10
4秒前
Ya完成签到,获得积分10
5秒前
吴海娇完成签到,获得积分10
10秒前
田様应助晨熙采纳,获得10
11秒前
正直的魔镜完成签到 ,获得积分10
13秒前
sisyphus_yy完成签到 ,获得积分10
13秒前
远_09完成签到 ,获得积分10
14秒前
Owen应助二三采纳,获得10
14秒前
lkz完成签到,获得积分10
14秒前
12wsesd完成签到 ,获得积分10
15秒前
morph完成签到,获得积分10
15秒前
光亮代玉完成签到 ,获得积分10
16秒前
26秒前
Dr大壮发布了新的文献求助30
28秒前
曾珍完成签到 ,获得积分10
29秒前
Orange应助科研通管家采纳,获得10
31秒前
天天快乐应助科研通管家采纳,获得10
31秒前
CipherSage应助科研通管家采纳,获得10
31秒前
ED应助科研通管家采纳,获得10
31秒前
无限冬卉发布了新的文献求助10
32秒前
33秒前
俏皮的老城完成签到 ,获得积分10
33秒前
caozhi完成签到,获得积分10
33秒前
Wu完成签到,获得积分10
35秒前
zzz发布了新的文献求助10
37秒前
39秒前
逍遥完成签到,获得积分10
39秒前
无限冬卉完成签到,获得积分10
40秒前
善学以致用应助modesty采纳,获得10
40秒前
HiDasiy完成签到 ,获得积分10
41秒前
43秒前
bkagyin应助vivre223采纳,获得10
44秒前
45秒前
田様应助tracey采纳,获得10
45秒前
坚定的海露完成签到,获得积分10
46秒前
47秒前
HuY完成签到 ,获得积分10
49秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966201
求助须知:如何正确求助?哪些是违规求助? 3511622
关于积分的说明 11158995
捐赠科研通 3246241
什么是DOI,文献DOI怎么找? 1793321
邀请新用户注册赠送积分活动 874321
科研通“疑难数据库(出版商)”最低求助积分说明 804343