涂层
材料科学
抗菌活性
表面改性
磷酰胆碱
粘附
化学工程
基质(水族馆)
壳聚糖
纳米技术
化学
复合材料
细菌
工程类
地质学
海洋学
生物
生物化学
遗传学
作者
Yixin Zhang,Wei Jiang,Lele Lei,Ying Wang,Rongnian Xu,Long Qin,Qiangbing Wei
出处
期刊:Langmuir
[American Chemical Society]
日期:2022-05-30
卷期号:38 (23): 7157-7167
被引量:22
标识
DOI:10.1021/acs.langmuir.2c00353
摘要
Bacterial infections and limited surface lubrication are the two key challenges for bioimplants in dynamic contact with tissues. However, the simultaneous lubricating and antibacterial properties of the bioimplants have rarely been investigated. In this work, we successfully developed a multifunctional coating with simultaneous antibacterial and lubricating properties for surface functionalization of bioimplant materials. The multifunctional coating was fabricated on a polyurethane (PU) substrate via polydopamine (PDA)-assisted multicomponent codeposition, containing polyethyleneimine (PEI) and trace amounts of copper (Cu) as synergistic antibacterial components and zwitterionic poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) as the lubricating component. The obtained PDA(Cu)/PEI/PMPC coating showed excellent antibacterial activity (antibacterial efficiency: ∼99%) to both Escherichia coli and Staphylococcus aureus compared with bare PU. The excellent antibacterial properties were attributed to the combined effect of anti-adhesion capability of hydrophilic PMPC and PEI and bactericidal activity of Cu in the coating. Meanwhile, the coefficient of friction of the coating was significantly decreased by ∼52% compared with bare PU owing to the high hydration feature of PMPC, suggesting the superior lubricating property. Furthermore, the PDA(Cu)/PEI/PMPC coating was highly biocompatible toward human umbilical vein endothelial cells demonstrated by in vitro cytotoxicity tests. This study not only contributes to the chemistry of PDA-assisted multicomponent codeposition but also provides a facile and practical way for rational design of multifunctional coatings for medical devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI