已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development of an Electronic Stethoscope and a Classification Algorithm for Cardiopulmonary Sounds

听诊器 听诊 心音 话筒 语音识别 计算机科学 快速傅里叶变换 人工智能 模式识别(心理学) 声学 医学 声压 算法 电信 物理 内科学 放射科
作者
Yiching Wu,Chin‐Chuan Han,Chao-Shu Chang,Fu-Lin Chang,Shifeng Chen,Tsu-Yi Shieh,Hsian‐Min Chen,Jin‐Yuan Lin
出处
期刊:Sensors [MDPI AG]
卷期号:22 (11): 4263-4263 被引量:12
标识
DOI:10.3390/s22114263
摘要

With conventional stethoscopes, the auscultation results may vary from one doctor to another due to a decline in his/her hearing ability with age or his/her different professional training, and the problematic cardiopulmonary sound cannot be recorded for analysis. In this paper, to resolve the above-mentioned issues, an electronic stethoscope was developed consisting of a traditional stethoscope with a condenser microphone embedded in the head to collect cardiopulmonary sounds and an AI-based classifier for cardiopulmonary sounds was proposed. Different deployments of the microphone in the stethoscope head with amplification and filter circuits were explored and analyzed using fast Fourier transform (FFT) to evaluate the effects of noise reduction. After testing, the microphone placed in the stethoscope head surrounded by cork is found to have better noise reduction. For classifying normal (healthy) and abnormal (pathological) cardiopulmonary sounds, each sample of cardiopulmonary sound is first segmented into several small frames and then a principal component analysis is performed on each small frame. The difference signal is obtained by subtracting PCA from the original signal. MFCC (Mel-frequency cepstral coefficients) and statistics are used for feature extraction based on the difference signal, and ensemble learning is used as the classifier. The final results are determined by voting based on the classification results of each small frame. After the testing, two distinct classifiers, one for heart sounds and one for lung sounds, are proposed. The best voting for heart sounds falls at 5-45% and the best voting for lung sounds falls at 5-65%. The best accuracy of 86.9%, sensitivity of 81.9%, specificity of 91.8%, and F1 score of 86.1% are obtained for heart sounds using 2 s frame segmentation with a 20% overlap, whereas the best accuracy of 73.3%, sensitivity of 66.7%, specificity of 80%, and F1 score of 71.5% are yielded for lung sounds using 5 s frame segmentation with a 50% overlap.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Noob_saibot完成签到,获得积分10
刚刚
2秒前
jkzhang发布了新的文献求助10
2秒前
3秒前
大海完成签到,获得积分10
4秒前
xr发布了新的文献求助10
5秒前
嗯哼发布了新的文献求助10
7秒前
何柯发布了新的文献求助10
8秒前
9秒前
10秒前
10秒前
11秒前
12秒前
12秒前
月亮打盹儿完成签到 ,获得积分10
13秒前
科研通AI2S应助xr采纳,获得10
13秒前
上官若男应助xr采纳,获得10
13秒前
mimicyang发布了新的文献求助10
13秒前
Owen应助wzq采纳,获得10
14秒前
14秒前
crack完成签到,获得积分10
14秒前
dandan发布了新的文献求助10
15秒前
16秒前
zhong发布了新的文献求助200
16秒前
16秒前
冰美式发布了新的文献求助10
17秒前
隐形曼青应助bang269采纳,获得10
18秒前
21秒前
22秒前
研友_VZG7GZ应助嗯哼采纳,获得10
22秒前
伊倾发布了新的文献求助10
23秒前
25秒前
26秒前
依克发布了新的文献求助10
28秒前
28秒前
Noob_saibot发布了新的文献求助10
29秒前
guosien发布了新的文献求助10
31秒前
淡定绾绾发布了新的文献求助10
31秒前
王孟凡完成签到 ,获得积分10
32秒前
36秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125735
求助须知:如何正确求助?哪些是违规求助? 2775985
关于积分的说明 7728880
捐赠科研通 2431495
什么是DOI,文献DOI怎么找? 1292081
科研通“疑难数据库(出版商)”最低求助积分说明 622348
版权声明 600380