蒸散量
作物系数
环境科学
涡度相关法
闪烁计
遥感
水平衡
归一化差异植被指数
水文学(农业)
均方误差
叶面积指数
气象学
数学
地理
地质学
统计
湍流
大气湍流
岩土工程
生态系统
生物
生态学
作者
Jamal Elfarkh,Vincent Simonneaux,Lionel Jarlan,Jamal Ezzahar,Gilles Boulet,Adnane Chakir,Salah Er‐Raki
标识
DOI:10.1016/j.agwat.2022.107728
摘要
Quantification of actual crop evapotranspiration (ETa) over large areas is a critical issue to manage water resources, particularly in semi-arid regions. In this study, four models driven by high resolution remote sensing data were intercompared and evaluated over an heterogeneous and complex traditional irrigated area located in the piedmont of the High Atlas mountain, Morocco, during the 2017 and 2018 seasons: (1) SAtellite Monitoring of IRrigation (SAMIR) which is a software-based on the FAO-56 dual crop coefficient water balance model fed with Sentinel-2 high-resolution Normalized Difference Vegetation Index (NDVI) to derive the basal crop coefficient (Kcb); (2) Soil Plant Atmosphere and Remote Sensing Evapotranspiration (SPARSE) which is a surface energy balance model fed with land surface temperature (LST) derived from thermal data provided from Landsat 7 and 8; (3) a modified version of the Shuttleworth–Wallace (SW) model which uses the LST to compute surface resistances and (4) METRIC-GEE which is a version of METRIC model (“Mapping Evapotranspiration at high Resolution with Internalized Calibration”) that operates on the Google Earth Engine platform, also driven by LST. Actual evapotranspiration (ETa) measurements from two Eddy-Covariance (EC) systems and a Large Aperture Scintillometer (LAS) were used to evaluate the four models. One EC was used to calibrate SAMIR and SPARSE (EC1) which were validated using the second one (EC2), providing a Root Mean Square Error (RMSE) and a determination coefficient (R) of 0.53 mm/day (R=0.82) and 0.66 mm/day (R=0.74), respectively. SW and METRIC-GEE simulations were obtained respectively from a previous study and Google Earth Engine (GEE), therefore no calibration was performed in this study. The four models predict well the seasonal course of ETa during two successive growing seasons (2017 and 2018). However, their performances were contrasted and varied depending on the seasons, the water stress conditions and the vegetation development. By comparing the statistical results between the simulation and the measurements of ETa it has been shown that SAMIR and METRIC-GEE are the less scattered and the better in agreement with the LAS measurements (RMSE equal to 0.73 and 0.68 mm/day and R equal to 0.74 and 0.82, respectively). On the other hand, SPARSE is less scattered (RMSE = 0.90 mm/day, R = 0.54) than SW which is slightly better correlated (RMSE = 0.98 mm/day, R = 0.60) with the observations. This study contributes to explore the complementarities between these approaches in order to improve the evapotranspiration mapping monitored with high-resolution remote sensing data
科研通智能强力驱动
Strongly Powered by AbleSci AI