亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Battery health-aware and naturalistic data-driven energy management for hybrid electric bus based on TD3 deep reinforcement learning algorithm

强化学习 电池(电) 计算机科学 行驶循环 能源管理 能源消耗 汽车工程 深度学习 模拟 功率(物理) 能量(信号处理) 电动汽车 人工智能 工程类 电气工程 统计 物理 数学 量子力学
作者
Ruchen Huang,Hongwen He,Xuyang Zhao,Yunlong Wang,Menglin Li
出处
期刊:Applied Energy [Elsevier]
卷期号:321: 119353-119353 被引量:65
标识
DOI:10.1016/j.apenergy.2022.119353
摘要

• A specific driving cycle is constructed through a naturalistic data-driven method. • An energy management strategy based on the TD3 algorithm is proposed. • The health of the onboard lithium-ion battery system is taken into consideration. • Real velocity data and the constructed cycle are used as the training and testing datasets. • The superiority of the proposed strategy is validated compared with DDPG and DDQL. Energy management is critical to reduce energy consumption and extend the service life of hybrid power systems. This article proposes an energy management strategy based on deep reinforcement learning with awareness of battery health for an urban power-split hybrid electric bus. In this article, a specific driving cycle of the test bus route is constructed through a naturalistic data-driven method to evaluate the practical operating costs of the hybrid electric bus accurately. Furthermore, an energy management strategy based on twin delayed deep deterministic policy gradient algorithm considering battery health is innovatively designed to minimize the total operating cost with a tradeoff between fuel consumption and battery degradation. Finally, the superiority of the proposed strategy over other state-of-the-art deep reinforcement learning-based strategies including deep deterministic policy gradient and double deep Q-learning is validated. Simulation results show that the constructed driving cycle can effectively reflect the real traffic conditions of the test bus route, and the proposed strategy can reduce the total operating cost while extending the battery life efficiently. This article makes contribution to the reliable evaluation of the practical operating costs and the extension of the battery life for urban hybrid electric buses through deep reinforcement learning methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
Shyee完成签到 ,获得积分10
13秒前
festum完成签到,获得积分10
35秒前
彭于晏应助计划采纳,获得10
38秒前
41秒前
43秒前
计划发布了新的文献求助10
48秒前
54秒前
catherine完成签到,获得积分10
58秒前
1分钟前
jubouwang发布了新的文献求助10
1分钟前
ataybabdallah完成签到,获得积分10
1分钟前
1分钟前
害羞龙猫完成签到 ,获得积分10
1分钟前
善学以致用应助Yeung采纳,获得10
1分钟前
小星星完成签到 ,获得积分10
1分钟前
学术扛把子完成签到 ,获得积分10
1分钟前
2分钟前
迷路筝发布了新的文献求助10
2分钟前
2分钟前
迷路筝完成签到,获得积分10
2分钟前
欣5发布了新的文献求助10
2分钟前
2分钟前
李健应助yyds采纳,获得10
2分钟前
2分钟前
鱼肉蛋奶发布了新的文献求助10
2分钟前
传奇3应助yyds采纳,获得10
3分钟前
3分钟前
3分钟前
鱼肉蛋奶完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
大庆完成签到,获得积分10
4分钟前
PinKing完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3256956
求助须知:如何正确求助?哪些是违规求助? 2899010
关于积分的说明 8303245
捐赠科研通 2568229
什么是DOI,文献DOI怎么找? 1394995
科研通“疑难数据库(出版商)”最低求助积分说明 652925
邀请新用户注册赠送积分活动 630662