Battery health-aware and naturalistic data-driven energy management for hybrid electric bus based on TD3 deep reinforcement learning algorithm

强化学习 电池(电) 计算机科学 行驶循环 能源管理 能源消耗 汽车工程 深度学习 模拟 功率(物理) 能量(信号处理) 电动汽车 人工智能 工程类 电气工程 物理 统计 量子力学 数学
作者
Ruchen Huang,Hongwen He,Xuyang Zhao,Yunlong Wang,Menglin Li
出处
期刊:Applied Energy [Elsevier]
卷期号:321: 119353-119353 被引量:65
标识
DOI:10.1016/j.apenergy.2022.119353
摘要

• A specific driving cycle is constructed through a naturalistic data-driven method. • An energy management strategy based on the TD3 algorithm is proposed. • The health of the onboard lithium-ion battery system is taken into consideration. • Real velocity data and the constructed cycle are used as the training and testing datasets. • The superiority of the proposed strategy is validated compared with DDPG and DDQL. Energy management is critical to reduce energy consumption and extend the service life of hybrid power systems. This article proposes an energy management strategy based on deep reinforcement learning with awareness of battery health for an urban power-split hybrid electric bus. In this article, a specific driving cycle of the test bus route is constructed through a naturalistic data-driven method to evaluate the practical operating costs of the hybrid electric bus accurately. Furthermore, an energy management strategy based on twin delayed deep deterministic policy gradient algorithm considering battery health is innovatively designed to minimize the total operating cost with a tradeoff between fuel consumption and battery degradation. Finally, the superiority of the proposed strategy over other state-of-the-art deep reinforcement learning-based strategies including deep deterministic policy gradient and double deep Q-learning is validated. Simulation results show that the constructed driving cycle can effectively reflect the real traffic conditions of the test bus route, and the proposed strategy can reduce the total operating cost while extending the battery life efficiently. This article makes contribution to the reliable evaluation of the practical operating costs and the extension of the battery life for urban hybrid electric buses through deep reinforcement learning methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孙博发布了新的文献求助10
刚刚
酶切完成签到,获得积分10
刚刚
刚刚
Owen应助血绣采纳,获得10
2秒前
4秒前
4秒前
Orange应助枕星采纳,获得10
4秒前
li完成签到,获得积分10
5秒前
CodeCraft应助积极擎汉采纳,获得10
5秒前
6秒前
费劲来到这的Rua完成签到,获得积分10
6秒前
曼珠沙华发布了新的文献求助10
7秒前
worrysyx完成签到,获得积分10
9秒前
huihui发布了新的文献求助10
9秒前
星辰大海应助sasa采纳,获得10
10秒前
12秒前
12秒前
13秒前
拉长的问晴完成签到,获得积分10
13秒前
科研通AI6应助坚果采纳,获得30
13秒前
王冠男完成签到,获得积分10
14秒前
14秒前
14秒前
banboo完成签到,获得积分10
16秒前
爆米花应助yyy采纳,获得10
17秒前
慕青应助qin采纳,获得10
18秒前
大个应助井哥儿采纳,获得10
18秒前
血绣发布了新的文献求助10
18秒前
闪闪秋寒完成签到 ,获得积分10
19秒前
LingYi完成签到,获得积分10
19秒前
郭琳完成签到,获得积分10
19秒前
lsc完成签到,获得积分10
20秒前
psc完成签到,获得积分10
21秒前
花成花完成签到,获得积分10
22秒前
22秒前
22秒前
SciGPT应助huihui采纳,获得10
22秒前
王冠男发布了新的文献求助30
22秒前
细心的思天完成签到 ,获得积分10
26秒前
27秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588492
求助须知:如何正确求助?哪些是违规求助? 4671582
关于积分的说明 14787884
捐赠科研通 4625454
什么是DOI,文献DOI怎么找? 2531836
邀请新用户注册赠送积分活动 1500428
关于科研通互助平台的介绍 1468314