Battery health-aware and naturalistic data-driven energy management for hybrid electric bus based on TD3 deep reinforcement learning algorithm

强化学习 电池(电) 计算机科学 行驶循环 能源管理 能源消耗 汽车工程 深度学习 模拟 功率(物理) 能量(信号处理) 电动汽车 人工智能 工程类 电气工程 物理 统计 量子力学 数学
作者
Ruchen Huang,Hongwen He,Xuyang Zhao,Yunlong Wang,Menglin Li
出处
期刊:Applied Energy [Elsevier BV]
卷期号:321: 119353-119353 被引量:65
标识
DOI:10.1016/j.apenergy.2022.119353
摘要

• A specific driving cycle is constructed through a naturalistic data-driven method. • An energy management strategy based on the TD3 algorithm is proposed. • The health of the onboard lithium-ion battery system is taken into consideration. • Real velocity data and the constructed cycle are used as the training and testing datasets. • The superiority of the proposed strategy is validated compared with DDPG and DDQL. Energy management is critical to reduce energy consumption and extend the service life of hybrid power systems. This article proposes an energy management strategy based on deep reinforcement learning with awareness of battery health for an urban power-split hybrid electric bus. In this article, a specific driving cycle of the test bus route is constructed through a naturalistic data-driven method to evaluate the practical operating costs of the hybrid electric bus accurately. Furthermore, an energy management strategy based on twin delayed deep deterministic policy gradient algorithm considering battery health is innovatively designed to minimize the total operating cost with a tradeoff between fuel consumption and battery degradation. Finally, the superiority of the proposed strategy over other state-of-the-art deep reinforcement learning-based strategies including deep deterministic policy gradient and double deep Q-learning is validated. Simulation results show that the constructed driving cycle can effectively reflect the real traffic conditions of the test bus route, and the proposed strategy can reduce the total operating cost while extending the battery life efficiently. This article makes contribution to the reliable evaluation of the practical operating costs and the extension of the battery life for urban hybrid electric buses through deep reinforcement learning methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
奥利奥利奥完成签到 ,获得积分10
1秒前
lailai完成签到,获得积分10
1秒前
Min完成签到,获得积分10
2秒前
2秒前
2秒前
yyyy发布了新的文献求助30
3秒前
April驳回了归尘应助
3秒前
Yyyyyyyyy应助科研通管家采纳,获得20
3秒前
3秒前
3秒前
yar应助科研通管家采纳,获得10
3秒前
3秒前
Gauss应助科研通管家采纳,获得30
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
iNk应助科研通管家采纳,获得20
3秒前
Hello应助科研通管家采纳,获得10
4秒前
缓慢如南应助科研通管家采纳,获得10
4秒前
栀夏完成签到,获得积分10
4秒前
yar应助科研通管家采纳,获得10
4秒前
桐桐应助杨杨采纳,获得10
4秒前
orixero应助科研通管家采纳,获得10
4秒前
4秒前
yar应助科研通管家采纳,获得10
4秒前
iNk应助科研通管家采纳,获得20
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
musejie应助科研通管家采纳,获得10
4秒前
自信夜春完成签到,获得积分10
4秒前
思源应助科研通管家采纳,获得10
5秒前
JamesPei应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
六六安安完成签到,获得积分10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
华仔应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986641
求助须知:如何正确求助?哪些是违规求助? 3529109
关于积分的说明 11243520
捐赠科研通 3267633
什么是DOI,文献DOI怎么找? 1803801
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582