Battery health-aware and naturalistic data-driven energy management for hybrid electric bus based on TD3 deep reinforcement learning algorithm

强化学习 电池(电) 计算机科学 行驶循环 能源管理 能源消耗 汽车工程 深度学习 模拟 功率(物理) 能量(信号处理) 电动汽车 人工智能 工程类 电气工程 统计 物理 数学 量子力学
作者
Ruchen Huang,Hongwen He,Xuyang Zhao,Yunlong Wang,Menglin Li
出处
期刊:Applied Energy [Elsevier]
卷期号:321: 119353-119353 被引量:65
标识
DOI:10.1016/j.apenergy.2022.119353
摘要

• A specific driving cycle is constructed through a naturalistic data-driven method. • An energy management strategy based on the TD3 algorithm is proposed. • The health of the onboard lithium-ion battery system is taken into consideration. • Real velocity data and the constructed cycle are used as the training and testing datasets. • The superiority of the proposed strategy is validated compared with DDPG and DDQL. Energy management is critical to reduce energy consumption and extend the service life of hybrid power systems. This article proposes an energy management strategy based on deep reinforcement learning with awareness of battery health for an urban power-split hybrid electric bus. In this article, a specific driving cycle of the test bus route is constructed through a naturalistic data-driven method to evaluate the practical operating costs of the hybrid electric bus accurately. Furthermore, an energy management strategy based on twin delayed deep deterministic policy gradient algorithm considering battery health is innovatively designed to minimize the total operating cost with a tradeoff between fuel consumption and battery degradation. Finally, the superiority of the proposed strategy over other state-of-the-art deep reinforcement learning-based strategies including deep deterministic policy gradient and double deep Q-learning is validated. Simulation results show that the constructed driving cycle can effectively reflect the real traffic conditions of the test bus route, and the proposed strategy can reduce the total operating cost while extending the battery life efficiently. This article makes contribution to the reliable evaluation of the practical operating costs and the extension of the battery life for urban hybrid electric buses through deep reinforcement learning methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
2秒前
2秒前
科研通AI5应助yx采纳,获得10
2秒前
3秒前
hym完成签到,获得积分10
3秒前
马静雨关注了科研通微信公众号
3秒前
111222完成签到,获得积分20
3秒前
4秒前
4秒前
三卡车安排你完成签到,获得积分10
5秒前
请叫我风吹麦浪应助Seiswan采纳,获得10
5秒前
5秒前
6秒前
6秒前
6秒前
7秒前
曾经以亦完成签到,获得积分10
7秒前
所所应助发疯的游子采纳,获得10
7秒前
8秒前
jcm发布了新的文献求助10
9秒前
辛勤的初晴完成签到,获得积分20
9秒前
Scidog发布了新的文献求助10
9秒前
单于静柏完成签到,获得积分10
10秒前
校长发布了新的文献求助10
10秒前
11秒前
御觞丶完成签到,获得积分10
11秒前
今后应助zhui采纳,获得10
12秒前
12秒前
SciGPT应助雾蓝采纳,获得10
12秒前
lulu828完成签到,获得积分10
13秒前
13秒前
科研闲人完成签到,获得积分10
14秒前
内向秋寒发布了新的文献求助10
14秒前
14秒前
黑色兔子完成签到 ,获得积分10
14秒前
15秒前
四小时充足睡眠完成签到,获得积分10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794