A Literature Review on Additional Semantic Information Conveyed from Driving Automation Systems to Drivers through Advanced In-Vehicle HMI Just Before, During, and Right After Takeover Request

自动化 更安全的 控制(管理) 计算机科学 人机交互 风险分析(工程) 计算机安全 工程类 人工智能 业务 机械工程
作者
Weimin Liu,Qingkun Li,Wei Wang,Wenjun Wang,Chao Zeng,Bo Cheng
出处
期刊:International Journal of Human-computer Interaction [Informa]
卷期号:39 (10): 1995-2015 被引量:12
标识
DOI:10.1080/10447318.2022.2074669
摘要

In-vehicle human-machine interface (HMI) plays a significant role in accomplishing effective interactions between driving automation systems and drivers, especially during the transition of control. For this reason, different in-vehicle HMIs have been designed to convey additional semantic information from the driving automation systems to the drivers to realize safer, smoother, and better control transitions. This review summarizes and analyses 86 previously published studies that researched the effects of additional semantic information delivered through in-vehicle HMIs just before, during and right after takeover request (TOR). The additional semantic information mentioned in this review refer to the information beyond simple alerts to not only gain drivers’ attention but also additionally communicate contextual content and explanation to the drivers regarding its own purpose. In this review, the additional semantic information are categorized according to their purposes and effects into three aspects: mode awareness enhancement, situation awareness enhancement, and takeover maneuver assistance. The specificities and the corresponding concerns when applying additional semantic information to in-vehicle HMIs have been detailed analyzed throughout the entire article. Further suggestions are proposed for what should be carefully considered when adding additional information for better takeover. Prospects into future in-vehicle HMI possibilities are also raised that could be applied in both academic research and industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
pp完成签到,获得积分10
2秒前
搜集达人应助杜贺满采纳,获得10
2秒前
Dave完成签到,获得积分10
2秒前
标致惋庭完成签到,获得积分10
3秒前
Atopos文发布了新的文献求助10
3秒前
4秒前
小巧富完成签到,获得积分10
5秒前
研友_VZG7GZ应助Dave采纳,获得10
5秒前
5秒前
可爱的函函应助Layqiwook采纳,获得10
6秒前
:P完成签到,获得积分10
6秒前
危机的囧发布了新的文献求助100
6秒前
稳重的代容完成签到,获得积分10
7秒前
7秒前
默默纸飞机完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
8秒前
任性的梦菲完成签到,获得积分10
8秒前
8秒前
阿包发布了新的文献求助10
9秒前
科目三应助WML采纳,获得10
9秒前
小马甲应助iris采纳,获得10
9秒前
9秒前
9秒前
善学以致用应助一一采纳,获得10
10秒前
上官若男应助SPRETEND采纳,获得10
10秒前
所所应助小单采纳,获得10
10秒前
HJJHJH发布了新的文献求助20
10秒前
11秒前
11秒前
小宋加油发布了新的文献求助30
11秒前
yyu完成签到 ,获得积分10
12秒前
哈密瓜关注了科研通微信公众号
12秒前
杜贺满发布了新的文献求助10
12秒前
星语花发布了新的文献求助10
13秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3481399
求助须知:如何正确求助?哪些是违规求助? 3071505
关于积分的说明 9122297
捐赠科研通 2763255
什么是DOI,文献DOI怎么找? 1516352
邀请新用户注册赠送积分活动 701541
科研通“疑难数据库(出版商)”最低求助积分说明 700339