Geographical origin of American ginseng (Panax quinquefolius L.) based on chemical composition combined with chemometric

化学 色谱法 西洋参 人参 线性判别分析 气相色谱法 高效液相色谱法 质谱法 气相色谱-质谱法 数学 医学 统计 病理 替代医学
作者
Mengying Shuai,Yang Yang,Fuqing Bai,Lijun Cao,Ruyan Hou,Chuanyi Peng,Huimei Cai
出处
期刊:Journal of Chromatography A [Elsevier]
卷期号:1676: 463284-463284 被引量:17
标识
DOI:10.1016/j.chroma.2022.463284
摘要

American ginseng (Panax quinquefolius L.) is protected by Geographical Indications as harvested roots have different regional characteristics. The aim of this study was to distinguish 95 American ginseng samples from four origins (including America, Canada, Shandong province and the Northeast provinces in China), and to further discriminate samples harvested within the protected designation of origin (PDO) from those harvested in non-PDO regions. Two metabolomic methods were used to acquire qualitative data on the metabolites of American ginseng samples from different origins, namely high-performance liquid chromatography (HPLC) and headspace-gas chromatography-mass spectrometry (HS-GC-MS). There were significant differences in numerous metabolites, including volatile compounds and ginsenosides. American ginsengs from four different regions were discriminated based on 25 volatile compounds and 8 ginsenosides using linear discriminant analysis (LDA), which had a 96.8% accuracy and a 74.7% cross validation rate, and random forest (RF) modeling, which reached 100% accuracy using the training set and 92.9% accuracy using the testing set. The same 33 analytes combined with LDA and RF were compared for discrimination of PDO and non-PDO samples. The 100% accuracy was again obtained using the RF model, but only when using data from both HS-GC-MS and HPLC. The result showed that chemical composition combined with chemometric is effectively and accurately to study the origins of American ginseng.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
遊星完成签到,获得积分10
刚刚
可靠嘉懿完成签到 ,获得积分10
1秒前
旅顺口老李完成签到 ,获得积分10
1秒前
leon发布了新的文献求助30
1秒前
lalala发布了新的文献求助10
1秒前
dingdong发布了新的文献求助10
1秒前
辛勤的仰发布了新的文献求助10
1秒前
科研通AI2S应助白华苍松采纳,获得10
1秒前
Kiyotaka发布了新的文献求助30
1秒前
xiaozhenA发布了新的文献求助10
1秒前
Steve完成签到,获得积分10
2秒前
p8793428发布了新的文献求助30
2秒前
科研通AI2S应助zrk采纳,获得10
2秒前
2秒前
3秒前
3秒前
科研通AI2S应助lkc采纳,获得10
3秒前
雾见春完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
lmy完成签到 ,获得积分10
4秒前
平常的可乐完成签到 ,获得积分10
5秒前
5秒前
邵初蓝完成签到,获得积分10
6秒前
卡卡发布了新的文献求助10
7秒前
岳粤完成签到,获得积分10
7秒前
8秒前
大神发布了新的文献求助10
8秒前
8秒前
8秒前
xjtu发布了新的文献求助10
9秒前
雾见春发布了新的文献求助30
9秒前
姚文超完成签到,获得积分20
10秒前
科研小菜发布了新的文献求助10
10秒前
岳粤发布了新的文献求助10
10秒前
10秒前
10秒前
yijiubingshi发布了新的文献求助10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794