已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Sequence-based drug-target affinity prediction using weighted graph neural networks

计算机科学 序列(生物学) 人工神经网络 图形 数据挖掘 人工智能 模式识别(心理学) 机器学习 算法 计算生物学 生物 理论计算机科学 生物化学
作者
Mingjian Jiang,Shuang Wang,Shuguang Zhang,Wei Zhou,Yuanyuan Zhang,Zhen Li
出处
期刊:BMC Genomics [Springer Nature]
卷期号:23 (1) 被引量:10
标识
DOI:10.1186/s12864-022-08648-9
摘要

Affinity prediction between molecule and protein is an important step of virtual screening, which is usually called drug-target affinity (DTA) prediction. Its accuracy directly influences the progress of drug development. Sequence-based drug-target affinity prediction can predict the affinity according to protein sequence, which is fast and can be applied to large datasets. However, due to the lack of protein structure information, the accuracy needs to be improved.The proposed model which is called WGNN-DTA can be competent in drug-target affinity (DTA) and compound-protein interaction (CPI) prediction tasks. Various experiments are designed to verify the performance of the proposed method in different scenarios, which proves that WGNN-DTA has the advantages of simplicity and high accuracy. Moreover, because it does not need complex steps such as multiple sequence alignment (MSA), it has fast execution speed, and can be suitable for the screening of large databases.We construct protein and molecular graphs through sequence and SMILES that can effectively reflect their structures. To utilize the detail contact information of protein, graph neural network is used to extract features and predict the binding affinity based on the graphs, which is called weighted graph neural networks drug-target affinity predictor (WGNN-DTA). The proposed method has the advantages of simplicity and high accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助55555555采纳,获得30
刚刚
fhg完成签到 ,获得积分10
刚刚
仁爱的平凡完成签到,获得积分10
刚刚
感动乐双发布了新的文献求助10
2秒前
不知所措的咪完成签到,获得积分10
2秒前
3秒前
cj发布了新的文献求助10
4秒前
桐桐应助33采纳,获得10
6秒前
6秒前
6秒前
aimynora完成签到 ,获得积分10
6秒前
ding应助貔貅采纳,获得10
9秒前
Grace完成签到,获得积分10
10秒前
完美世界应助盲点采纳,获得10
12秒前
15秒前
zsyhcl应助smm采纳,获得10
17秒前
18秒前
纯真绣连发布了新的文献求助10
19秒前
oscar完成签到,获得积分10
21秒前
22秒前
略略略完成签到 ,获得积分10
23秒前
哲000完成签到 ,获得积分10
25秒前
Criminology34应助科研通管家采纳,获得10
25秒前
Criminology34应助科研通管家采纳,获得10
25秒前
25秒前
Jasper应助科研通管家采纳,获得10
26秒前
上官若男应助科研通管家采纳,获得10
26秒前
26秒前
852应助科研通管家采纳,获得10
26秒前
科研通AI6应助科研通管家采纳,获得10
26秒前
彭于晏应助科研通管家采纳,获得10
26秒前
充电宝应助科研通管家采纳,获得10
26秒前
27秒前
酷波er应助科研通管家采纳,获得10
27秒前
27秒前
27秒前
27秒前
惊蛰时分听春雷完成签到,获得积分10
27秒前
依晨发布了新的文献求助10
28秒前
lqqq完成签到 ,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5681062
求助须知:如何正确求助?哪些是违规求助? 5003654
关于积分的说明 15174723
捐赠科研通 4840762
什么是DOI,文献DOI怎么找? 2594387
邀请新用户注册赠送积分活动 1547528
关于科研通互助平台的介绍 1505465