Sequence-based drug-target affinity prediction using weighted graph neural networks

计算机科学 序列(生物学) 人工神经网络 图形 数据挖掘 人工智能 模式识别(心理学) 机器学习 算法 计算生物学 生物 理论计算机科学 生物化学
作者
Mingjian Jiang,Shuang Wang,Shuguang Zhang,Wei Zhou,Yuanyuan Zhang,Zhen Li
出处
期刊:BMC Genomics [BioMed Central]
卷期号:23 (1) 被引量:10
标识
DOI:10.1186/s12864-022-08648-9
摘要

Affinity prediction between molecule and protein is an important step of virtual screening, which is usually called drug-target affinity (DTA) prediction. Its accuracy directly influences the progress of drug development. Sequence-based drug-target affinity prediction can predict the affinity according to protein sequence, which is fast and can be applied to large datasets. However, due to the lack of protein structure information, the accuracy needs to be improved.The proposed model which is called WGNN-DTA can be competent in drug-target affinity (DTA) and compound-protein interaction (CPI) prediction tasks. Various experiments are designed to verify the performance of the proposed method in different scenarios, which proves that WGNN-DTA has the advantages of simplicity and high accuracy. Moreover, because it does not need complex steps such as multiple sequence alignment (MSA), it has fast execution speed, and can be suitable for the screening of large databases.We construct protein and molecular graphs through sequence and SMILES that can effectively reflect their structures. To utilize the detail contact information of protein, graph neural network is used to extract features and predict the binding affinity based on the graphs, which is called weighted graph neural networks drug-target affinity predictor (WGNN-DTA). The proposed method has the advantages of simplicity and high accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助淡淡夕阳采纳,获得10
刚刚
宝宝完成签到 ,获得积分10
刚刚
1秒前
lfzw发布了新的文献求助10
1秒前
2秒前
2秒前
3秒前
4秒前
4秒前
自然含羞草完成签到,获得积分10
5秒前
suxy发布了新的文献求助10
6秒前
谭玲慧完成签到 ,获得积分10
7秒前
7秒前
9秒前
卡卡卡卡卡卡卡卡卡西完成签到,获得积分10
9秒前
十六发布了新的文献求助10
11秒前
端庄映梦发布了新的文献求助10
11秒前
酷波er应助甲乙丙丁采纳,获得10
11秒前
eirainal001发布了新的文献求助20
12秒前
Zzzzzzz完成签到 ,获得积分10
13秒前
13秒前
CipherSage应助Skuld采纳,获得10
13秒前
jxiiang完成签到 ,获得积分10
14秒前
14秒前
赘婿应助YXH采纳,获得10
15秒前
博修发布了新的文献求助10
15秒前
15秒前
16秒前
CipherSage应助紧张的妖妖采纳,获得10
16秒前
董坤瑶发布了新的文献求助10
16秒前
帅气凝云完成签到 ,获得积分10
16秒前
minrui发布了新的文献求助10
16秒前
苹果板凳完成签到,获得积分10
18秒前
19秒前
20秒前
21秒前
21秒前
苹果板凳发布了新的文献求助10
22秒前
LiShin发布了新的文献求助10
22秒前
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966468
求助须知:如何正确求助?哪些是违规求助? 3511965
关于积分的说明 11161125
捐赠科研通 3246769
什么是DOI,文献DOI怎么找? 1793483
邀请新用户注册赠送积分活动 874482
科研通“疑难数据库(出版商)”最低求助积分说明 804403