亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Multi-Dimensional Analysis of English tweets

多样性(控制论) 变化(天文学) 计算机科学 人气 语料库语言学 语言学 自然语言处理 意义(存在) 频率 人工智能 数学 心理学 统计 哲学 物理 心理治疗师 社会心理学 天体物理学
作者
Isobelle Clarke
出处
期刊:Language and Literature [SAGE]
卷期号:31 (2): 124-149 被引量:33
标识
DOI:10.1177/09639470221090369
摘要

This paper applies Multi-Dimensional Analysis (MDA) to a corpus of English tweets to uncover the most common patterns of linguistic variation. MDA is a commonly applied method in corpus linguistics for the analysis of functional and/or stylistic variation in a particular language variety. Notably, MDA is an approach aimed at identifying and interpreting the frequent patterns of co-occurring linguistic features across a corpus, such as a corpus of spoken and written English registers (Biber, 1988). Traditionally, MDA is based on a factor analysis of the relative frequencies of numerous grammatical features measured across numerous texts drawn from that variety of language to identify a series of underlying dimensions of linguistic variation. Despite its popularity and utility, traditional MDA has an important limitation – it can only be used to analyse texts that are long enough to allow for the relative frequencies of many grammatical forms to be estimated accurately. If the texts under analysis are too short, then few forms can be expected to occur sufficiently frequently for their relative frequency to be accurately estimated. Tweets are characteristically short texts, meaning that traditional MDA cannot be used in the present research. To overcome this problem, this paper introduces a short-text version of MDA and applies it to a corpus of English tweets. Specifically, rather than measure the relative frequencies of forms in each tweet, the approach analyses their occurrence. This binary dataset is then aggregated using Multiple Correspondence Analysis (MCA), which is used much like factor analysis in traditional MDA – to return a series of dimensions that represent the most common patterns of linguistic variation in the dataset. After controlling for text length in the first dimension, four subsequent dimensions are interpreted. The results suggest that there is a great deal of linguistic variation on Twitter. Notably, the results show that Twitter is commonly used for self-commodification, as people manage their identities, engaging in practices of self-branding through stance-taking, self-reporting, promotion and persuasion, as well as broadcasting their message beyond their followership, distributing news and expressing opposition, and this often occurs in order to attract attention. Additionally, the results show that interaction is common, suggesting that Twitter is also used for social and interpersonal gain.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
54秒前
lpcxly发布了新的文献求助10
58秒前
1分钟前
1437594843完成签到 ,获得积分10
1分钟前
lpcxly发布了新的文献求助10
1分钟前
1分钟前
lpcxly发布了新的文献求助10
1分钟前
1分钟前
2分钟前
lpcxly发布了新的文献求助10
2分钟前
2分钟前
lpcxly发布了新的文献求助10
2分钟前
2分钟前
xiaodong发布了新的文献求助100
3分钟前
3分钟前
坚强的虔完成签到,获得积分20
3分钟前
坚强的虔发布了新的文献求助10
3分钟前
藤椒辣鱼应助科研通管家采纳,获得10
3分钟前
藤椒辣鱼应助科研通管家采纳,获得10
3分钟前
4分钟前
奋斗的萝发布了新的文献求助30
4分钟前
cc应助奋斗的萝采纳,获得10
4分钟前
cc应助奋斗的萝采纳,获得10
4分钟前
wanci应助奋斗的萝采纳,获得10
4分钟前
科研通AI2S应助lpcxly采纳,获得10
4分钟前
丘比特应助xiaodong采纳,获得10
4分钟前
5分钟前
xiaodong发布了新的文献求助10
5分钟前
5分钟前
xiaodong完成签到,获得积分10
5分钟前
藤椒辣鱼应助科研通管家采纳,获得10
5分钟前
藤椒辣鱼应助科研通管家采纳,获得10
5分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
5分钟前
藤椒辣鱼应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助苑阿宇采纳,获得10
5分钟前
刘刘完成签到 ,获得积分10
6分钟前
6分钟前
Nc发布了新的文献求助20
6分钟前
6分钟前
高分求助中
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3463632
求助须知:如何正确求助?哪些是违规求助? 3057036
关于积分的说明 9055200
捐赠科研通 2746957
什么是DOI,文献DOI怎么找? 1507179
科研通“疑难数据库(出版商)”最低求助积分说明 696451
邀请新用户注册赠送积分活动 695936