Identifying molecular functional groups of organic compounds by deep learning of NMR data

人工智能 采样(信号处理) 支持向量机 模式识别(心理学) 超参数 特征(语言学) 一般化 人工神经网络 机器学习 数据集 原始数据 化学 计算机科学 数学 滤波器(信号处理) 数学分析 哲学 语言学 程序设计语言 计算机视觉
作者
Chongcan Li,Yong Cong,Weihua Deng
出处
期刊:Magnetic Resonance in Chemistry [Wiley]
卷期号:60 (11): 1061-1069 被引量:10
标识
DOI:10.1002/mrc.5292
摘要

We preprocess the raw nuclear magnetic resonance (NMR) spectrum and extract key features by using two different methodologies, called equidistant sampling and peak sampling for subsequent substructure pattern recognition. We also provide a strategy to address the imbalance issue frequently encountered in statistical modeling of NMR data set and establish two conventional support vector machine (SVM) and K-nearest neighbor (KNN) models to assess the capability of two feature selections, respectively. Our results in this study show that the models using the selected features of peak sampling outperform those using equidistant sampling. Then we build the recurrent neural network (RNN) model trained by data collected from peak sampling. Furthermore, we illustrate the easier optimization of hyperparameters and the better generalization ability of the RNN deep learning model by detailed comparison with traditional machine learning SVM and KNN models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
SebastianW完成签到,获得积分10
2秒前
2秒前
酷酷煎饼发布了新的文献求助10
3秒前
雨齐完成签到,获得积分10
3秒前
4秒前
李健应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
今后应助科研通管家采纳,获得10
5秒前
Hello应助科研通管家采纳,获得10
6秒前
科目三应助科研通管家采纳,获得10
6秒前
慕青应助科研通管家采纳,获得10
6秒前
ding应助科研通管家采纳,获得10
6秒前
我是老大应助科研通管家采纳,获得10
6秒前
Singularity应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
苦行僧完成签到,获得积分10
6秒前
牛牛眉目发布了新的文献求助10
7秒前
8秒前
共享精神应助Yuki酱采纳,获得10
9秒前
今后应助陈希铭采纳,获得10
10秒前
zz发布了新的文献求助10
10秒前
嗯哼哈哈发布了新的文献求助10
11秒前
笑哦完成签到,获得积分10
13秒前
月亮moon完成签到,获得积分10
14秒前
诺颜爱发布了新的文献求助10
17秒前
FDY完成签到,获得积分10
18秒前
TheaGao完成签到 ,获得积分10
20秒前
冯冯完成签到 ,获得积分10
22秒前
传奇3应助XXXXX采纳,获得10
22秒前
yx_cheng应助ll采纳,获得10
26秒前
郭京京完成签到 ,获得积分10
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966366
求助须知:如何正确求助?哪些是违规求助? 3511778
关于积分的说明 11159852
捐赠科研通 3246372
什么是DOI,文献DOI怎么找? 1793416
邀请新用户注册赠送积分活动 874427
科研通“疑难数据库(出版商)”最低求助积分说明 804388