In vivo models are indispensable for preclinical studies for various human disease modeling and drug screening, however, face several obstacles such as animal model species differences and ethical clearance. Additionally, it is difficult to accurately predict the organ interaction, drug efficacy, and toxicity using conventional in vitro two-dimensional (2D) cell culture models. The microfluidic-based systems provide excellent opportunity to recapitulate the human organ/tissue functions under in vitro conditions. The organ/tissue-on-chip models are one of best emerging technologies that offer functional organs/tissues on a microfluidic chip. This technology has potential to noninvasively study the organ physiology, tissue development, and diseases etymology. This chapter comprises the benifits of 2D and three-dimensional (3D) in vitro cultures as well as highlights the importance of microfluidic-based lab-on-a-chip technique. The development of different organs/tissues-on-chip models and their biomedical application in various diseases such as cardiovascular diseases, neurodegenerative diseases, respiratory-based diseases, cancers, liver and kidney diseases, etc., have also been discussed.