Prediction of shale gas horizontal wells productivity after volume fracturing using machine learning – an LSTM approach

页岩气 石油工程 油页岩 人工神经网络 体积热力学 生产(经济) 生产力 磁导率 地质学 计算机科学 人工智能 化学 物理 宏观经济学 古生物学 量子力学 经济 生物化学
作者
Xianchao Chen,Li Jiang,Ping Gao,Jingchao Zhou
出处
期刊:Petroleum Science and Technology [Informa]
卷期号:40 (15): 1861-1877 被引量:12
标识
DOI:10.1080/10916466.2022.2032739
摘要

The exploration and development of shale gas is becoming more important owing to the increasing of world energy demand. However, calculating the productivity of horizontal wells after shale gas volume fracturing is always difficult due to various complicated factors. In this study, the long short-term memory (LSTM) neural network was establised and demonstrated to be successful in China complex shale gas production time series prediction. Firstly, the geological characteristics of shale gas and fracturing technology was briefly introduced. Then, a shale gas horizontal well volume fracturing productivity prediction model was established based on a long short-term memory (LSTM) neural network and using actual production data for two shale gas models. The mean absolute percentage error between the predicted results and the actual production data is less than 5%, which indicates a good performance in terms of the prediction of values and trends. Based on this model, sensitivity analysis of the effect of the stimulated reservoir volume (SRV), fracture parameters, permeability, and other factors on the productivity of shale gas wells was carried out. The newly developed LSTM time series productivity prediction method and the insights it provides can be used by reservoir engineers to optimize shale gas field development plans.HighlightsA new machine learning (LSTM) shale gas production prediction model is proposed.The new machine learning model is better than the traditional RTA or DCA methods.The example calculation results show that the LSTM can predict the future production capacity value with a certain accuracy.The new model is useful for optimization in shale gas field development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Allot留下了新的社区评论
1秒前
暮霭沉沉应助亓大大采纳,获得20
1秒前
乐乐应助和谐的寄凡采纳,获得10
2秒前
ZW完成签到,获得积分10
3秒前
3秒前
思源应助霖槿采纳,获得10
3秒前
4秒前
5秒前
充电宝应助心灵美的幼珊采纳,获得10
6秒前
7秒前
情怀应助zzl采纳,获得10
7秒前
月笙完成签到,获得积分10
8秒前
orixero应助langjidong采纳,获得10
8秒前
天天驳回了Gergeo应助
9秒前
10秒前
12秒前
12秒前
12秒前
赛赛发布了新的文献求助20
13秒前
13秒前
科研通AI2S应助zzqx采纳,获得10
14秒前
彭于晏应助haning采纳,获得10
14秒前
陈一晨完成签到 ,获得积分10
14秒前
14秒前
dxj关闭了dxj文献求助
15秒前
cqy发布了新的文献求助10
15秒前
张张完成签到 ,获得积分10
15秒前
15秒前
所所应助lsy采纳,获得10
16秒前
16秒前
17秒前
17秒前
mike发布了新的文献求助10
17秒前
KASTTTTTT发布了新的文献求助10
17秒前
霖槿发布了新的文献求助10
18秒前
Gang发布了新的文献求助30
18秒前
充电宝应助隐形的乐枫采纳,获得10
18秒前
18秒前
sunshine发布了新的文献求助10
18秒前
隐形曼青应助LM采纳,获得10
18秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157139
求助须知:如何正确求助?哪些是违规求助? 2808445
关于积分的说明 7877659
捐赠科研通 2466978
什么是DOI,文献DOI怎么找? 1313089
科研通“疑难数据库(出版商)”最低求助积分说明 630364
版权声明 601919