Prediction of shale gas horizontal wells productivity after volume fracturing using machine learning – an LSTM approach

页岩气 石油工程 油页岩 人工神经网络 体积热力学 生产(经济) 生产力 磁导率 地质学 计算机科学 人工智能 化学 物理 宏观经济学 古生物学 量子力学 经济 生物化学
作者
Xianchao Chen,Li Jiang,Ping Gao,Jingchao Zhou
出处
期刊:Petroleum Science and Technology [Taylor & Francis]
卷期号:40 (15): 1861-1877 被引量:14
标识
DOI:10.1080/10916466.2022.2032739
摘要

The exploration and development of shale gas is becoming more important owing to the increasing of world energy demand. However, calculating the productivity of horizontal wells after shale gas volume fracturing is always difficult due to various complicated factors. In this study, the long short-term memory (LSTM) neural network was establised and demonstrated to be successful in China complex shale gas production time series prediction. Firstly, the geological characteristics of shale gas and fracturing technology was briefly introduced. Then, a shale gas horizontal well volume fracturing productivity prediction model was established based on a long short-term memory (LSTM) neural network and using actual production data for two shale gas models. The mean absolute percentage error between the predicted results and the actual production data is less than 5%, which indicates a good performance in terms of the prediction of values and trends. Based on this model, sensitivity analysis of the effect of the stimulated reservoir volume (SRV), fracture parameters, permeability, and other factors on the productivity of shale gas wells was carried out. The newly developed LSTM time series productivity prediction method and the insights it provides can be used by reservoir engineers to optimize shale gas field development plans.HighlightsA new machine learning (LSTM) shale gas production prediction model is proposed.The new machine learning model is better than the traditional RTA or DCA methods.The example calculation results show that the LSTM can predict the future production capacity value with a certain accuracy.The new model is useful for optimization in shale gas field development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
希望天下0贩的0应助ZH采纳,获得10
1秒前
烟花应助稳重的不正采纳,获得10
1秒前
高歌发布了新的文献求助10
1秒前
4秒前
Duffy完成签到,获得积分10
4秒前
passerby完成签到,获得积分10
5秒前
6秒前
7秒前
7秒前
大个应助qin采纳,获得10
7秒前
奥利安费发布了新的文献求助10
10秒前
10秒前
千跃应助没事哒采纳,获得10
11秒前
dnnnsns发布了新的文献求助30
12秒前
12秒前
13秒前
BioRick发布了新的文献求助10
13秒前
充电宝应助Ting采纳,获得10
14秒前
14秒前
超帅思天发布了新的文献求助10
17秒前
BioRick完成签到,获得积分10
17秒前
牧长一完成签到 ,获得积分0
19秒前
ltt发布了新的文献求助10
19秒前
21秒前
SCI方便面完成签到,获得积分10
25秒前
怕黑的静蕾应助雪山飞龙采纳,获得10
25秒前
25秒前
xiaoguangtou完成签到,获得积分10
26秒前
27秒前
小马甲应助迷人的芹菜采纳,获得10
27秒前
大个应助口外彭于晏采纳,获得10
28秒前
Espoir完成签到,获得积分10
28秒前
happy发布了新的文献求助50
29秒前
小马甲应助曼凡采纳,获得10
30秒前
30秒前
菘蓝发布了新的文献求助10
30秒前
31秒前
ueue完成签到,获得积分10
31秒前
32秒前
酷波er应助忧郁的心锁采纳,获得10
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966796
求助须知:如何正确求助?哪些是违规求助? 3512322
关于积分的说明 11162614
捐赠科研通 3247199
什么是DOI,文献DOI怎么找? 1793730
邀请新用户注册赠送积分活动 874602
科研通“疑难数据库(出版商)”最低求助积分说明 804432