Prediction of shale gas horizontal wells productivity after volume fracturing using machine learning – an LSTM approach

页岩气 石油工程 油页岩 人工神经网络 体积热力学 生产(经济) 生产力 磁导率 地质学 计算机科学 人工智能 化学 物理 宏观经济学 古生物学 量子力学 经济 生物化学
作者
Xianchao Chen,Li Jiang,Ping Gao,Jingchao Zhou
出处
期刊:Petroleum Science and Technology [Informa]
卷期号:40 (15): 1861-1877 被引量:12
标识
DOI:10.1080/10916466.2022.2032739
摘要

The exploration and development of shale gas is becoming more important owing to the increasing of world energy demand. However, calculating the productivity of horizontal wells after shale gas volume fracturing is always difficult due to various complicated factors. In this study, the long short-term memory (LSTM) neural network was establised and demonstrated to be successful in China complex shale gas production time series prediction. Firstly, the geological characteristics of shale gas and fracturing technology was briefly introduced. Then, a shale gas horizontal well volume fracturing productivity prediction model was established based on a long short-term memory (LSTM) neural network and using actual production data for two shale gas models. The mean absolute percentage error between the predicted results and the actual production data is less than 5%, which indicates a good performance in terms of the prediction of values and trends. Based on this model, sensitivity analysis of the effect of the stimulated reservoir volume (SRV), fracture parameters, permeability, and other factors on the productivity of shale gas wells was carried out. The newly developed LSTM time series productivity prediction method and the insights it provides can be used by reservoir engineers to optimize shale gas field development plans.HighlightsA new machine learning (LSTM) shale gas production prediction model is proposed.The new machine learning model is better than the traditional RTA or DCA methods.The example calculation results show that the LSTM can predict the future production capacity value with a certain accuracy.The new model is useful for optimization in shale gas field development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
薰硝壤应助默欢采纳,获得20
刚刚
刚刚
刚刚
刚刚
刚刚
jin完成签到 ,获得积分10
1秒前
小鱼yyy发布了新的文献求助20
3秒前
哈哈哈发布了新的文献求助10
5秒前
陈功完成签到,获得积分10
6秒前
搞怪路人完成签到 ,获得积分10
6秒前
CipherSage应助Judy采纳,获得10
6秒前
人间理想发布了新的文献求助10
7秒前
SciGPT应助小刺猬采纳,获得10
7秒前
8秒前
9秒前
科研通AI2S应助潮人采纳,获得10
10秒前
wp完成签到 ,获得积分10
10秒前
崔大胖发布了新的文献求助10
13秒前
15秒前
黎明完成签到,获得积分20
17秒前
18秒前
19秒前
19秒前
20秒前
研友_qZ6wg8发布了新的文献求助10
21秒前
22秒前
Jasper应助科研通管家采纳,获得10
22秒前
Lucas应助科研通管家采纳,获得10
22秒前
JamesPei应助科研通管家采纳,获得10
22秒前
深情安青应助科研通管家采纳,获得10
22秒前
今后应助科研通管家采纳,获得10
22秒前
思源应助科研通管家采纳,获得10
22秒前
小马甲应助科研通管家采纳,获得10
22秒前
桐桐应助科研通管家采纳,获得10
22秒前
Ava应助科研通管家采纳,获得30
22秒前
深情安青应助科研通管家采纳,获得20
23秒前
23秒前
hh完成签到,获得积分10
23秒前
罗妙梦发布了新的文献求助10
24秒前
高分求助中
Sustainability in Tides Chemistry 2000
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
A Dissection Guide & Atlas to the Rabbit 600
中国心血管健康与疾病报告2023(要完整的报告) 500
Development of a new synthetic process for the synthesis of (S)-methadone and (S)- and (R)-isomethadone as NMDA receptor antagonists for the treatment of depression 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3102764
求助须知:如何正确求助?哪些是违规求助? 2754003
关于积分的说明 7626148
捐赠科研通 2406815
什么是DOI,文献DOI怎么找? 1277007
科研通“疑难数据库(出版商)”最低求助积分说明 617041
版权声明 599103