Crosslinking of Pressure-Sensitive Adhesives with Polymer-Grafted Nanoparticles

材料科学 聚合物 胶粘剂 纳米颗粒 复合材料 丙烯酸酯 纳米复合材料 粒子(生态学) 甲基丙烯酸酯 表面改性 离子键合 化学工程 共聚物 纳米技术 有机化学 化学 离子 工程类 地质学 图层(电子) 海洋学
作者
Griffen Desroches,Yuping Wang,Joshua M. Kubiak,Robert J. Macfarlane
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:14 (7): 9579-9586 被引量:14
标识
DOI:10.1021/acsami.1c22997
摘要

Nanocomposite filler particles provide multiple routes to mechanically reinforce pressure-sensitive adhesives (PSAs), as their large surface area to volume ratios provide a means of effectively crosslinking multiple polymer chains. A major advancement could therefore be enabled by the design of a particle architecture that forms multiple physical and chemical interactions with the surrounding polymer matrix, while simultaneously ensuring particle dispersion and preventing particle aggregation. Understanding how such multivalent interactions between a nanoparticle crosslinking point and the PSA polymer affect material mechanical performance would provide both useful scientific knowledge on the mechanical structure-property relationships in polymer composites, as well as a new route to synthesizing useful PSA materials. Herein, we report the use of polymer-grafted nanoparticles (PGNPs) composed of poly(n-butyl acrylate-co-acrylic acid) chains grafted to SiO2 nanoparticle (NP) surfaces to cohesively reinforce PSA films against shear stress without compromising their adhesive properties. The use of acrylic acid-decorated PGNPs allows for ionic crosslinking via metal salt coordination to be used in conjunction with physical entanglement, yielding 33% greater shear resistance and up to 3-fold longer holding times under static load. In addition, the effects of material parameters such as PGNP/crosslinker loading, polymer graft length, and core nanoparticle size on mechanical properties are also explored, providing insights into the use of PGNPs for the rational design of polymer composite-based PSAs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wen发布了新的文献求助10
刚刚
ZQH发布了新的文献求助10
刚刚
张雪芹完成签到,获得积分10
1秒前
一二完成签到,获得积分20
2秒前
3秒前
活力的妙之完成签到 ,获得积分10
3秒前
Never stall发布了新的文献求助10
3秒前
4秒前
科研通AI6应助科研小尹采纳,获得10
4秒前
Ava应助灯灯采纳,获得10
5秒前
果果完成签到,获得积分10
6秒前
7秒前
魏笑白完成签到 ,获得积分10
7秒前
yearluren完成签到,获得积分10
7秒前
研友_LBoEqn发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
10秒前
清爽朋友发布了新的文献求助10
10秒前
gg发布了新的文献求助10
10秒前
10秒前
凤迎雪飘完成签到,获得积分10
10秒前
ZQH完成签到,获得积分10
10秒前
清明居士完成签到,获得积分10
11秒前
求助人员发布了新的文献求助10
11秒前
12秒前
小蘑菇应助禹宛白采纳,获得10
12秒前
ff完成签到,获得积分10
12秒前
舒适的蜜蜂完成签到,获得积分10
12秒前
英姑应助WNL采纳,获得10
12秒前
果果发布了新的文献求助10
13秒前
赵郑坤完成签到,获得积分10
13秒前
雷雷发布了新的文献求助10
13秒前
13秒前
科研通AI6应助wen采纳,获得30
13秒前
致意完成签到 ,获得积分10
14秒前
张雪芹发布了新的文献求助10
14秒前
刘富宇完成签到 ,获得积分10
14秒前
necos完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608256
求助须知:如何正确求助?哪些是违规求助? 4692810
关于积分的说明 14875754
捐赠科研通 4717042
什么是DOI,文献DOI怎么找? 2544147
邀请新用户注册赠送积分活动 1509105
关于科研通互助平台的介绍 1472802