Simulating policy interventions for different quota targets of renewable portfolio standard: A combination of evolutionary game and system dynamics approach

心理干预 对偶(语法数字) 文件夹 公共经济学 政府(语言学) 干预(咨询) 系统动力学 可再生能源 业务 环境经济学 经济 产业组织 微观经济学 计算机科学 财务 工程类 心理学 文学类 哲学 艺术 电气工程 人工智能 精神科 语言学
作者
Chaoping Zhu,Ruguo Fan,Ming Luo,Yingqing Zhang,Min Qin
出处
期刊:Sustainable Production and Consumption [Elsevier]
卷期号:30: 1053-1069 被引量:26
标识
DOI:10.1016/j.spc.2022.01.029
摘要

The renewable portfolio standard (RPS) is one of the most important policies for China's goals of emission peak and carbon neutralization. Central to advancing RPS is to ensure that stakeholders have the willingness to undertake their respective obligations. As a common instrument for pushing policy forward, policy interventions are frequently used by authorities to motivate and restrain the behaviors of stakeholders. However, it is still unclear how policy interventions under different quota targets affect the behavior strategies of stakeholders involved in RPS. Thus, this paper develops an evolutionary game model considering power sales companies (PSC) and power generation companies (PGC) as the participants. Based on official Chinese statistics and data from previous studies, we employ system dynamics to investigate the impacts of single and dual policy interventions under three quota targets on participants’ behavior strategies. The results indicate that, the evolutionary game always converges to the same evolutionary stable strategy for different initial strategies, and PGC are not as sensitive to quota targets as PSC. In addition, reward or penalty as single policy intervention has diverse impacts on participants, and PSC and PGC behave differently under all the combinations of dual policy interventions. To achieve desired policy goals, government should not only adopt policy interventions according to the stages of RPS implementation and in combination with other policy instruments, but also encourage stakeholders to consciously undertake their respective quota obligations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小太阳完成签到,获得积分10
刚刚
袁俪毓完成签到,获得积分10
1秒前
xiaofenzi完成签到,获得积分10
2秒前
噜噜噜完成签到 ,获得积分10
3秒前
ckmen5完成签到 ,获得积分10
4秒前
富贵儿完成签到 ,获得积分10
4秒前
5秒前
清风完成签到,获得积分10
5秒前
6秒前
和谐的映梦完成签到,获得积分10
6秒前
Astoria完成签到,获得积分10
6秒前
活力鸡完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
Jerome发布了新的文献求助10
9秒前
布曲完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
coollzl完成签到 ,获得积分10
12秒前
小王完成签到 ,获得积分10
13秒前
14秒前
一水独流完成签到,获得积分10
14秒前
百里幻翠完成签到,获得积分10
15秒前
搜集达人应助Jerome采纳,获得10
15秒前
凡事发生必有利于我完成签到,获得积分10
17秒前
今后应助chunyan_sysu采纳,获得10
17秒前
18秒前
逍遥子完成签到,获得积分10
19秒前
完美世界应助大狒狒采纳,获得10
20秒前
尤瑟夫完成签到 ,获得积分10
20秒前
大气思柔完成签到 ,获得积分10
20秒前
ccc完成签到,获得积分10
21秒前
wjw发布了新的文献求助10
21秒前
壁虎君完成签到,获得积分10
22秒前
22秒前
Chase完成签到,获得积分10
23秒前
杨玲完成签到 ,获得积分10
23秒前
24秒前
量子星尘发布了新的文献求助10
24秒前
尚影芷完成签到,获得积分10
25秒前
Liu完成签到 ,获得积分10
26秒前
林好人完成签到 ,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671607
求助须知:如何正确求助?哪些是违规求助? 4920377
关于积分的说明 15135208
捐赠科研通 4830460
什么是DOI,文献DOI怎么找? 2587117
邀请新用户注册赠送积分活动 1540692
关于科研通互助平台的介绍 1499071