Simulating policy interventions for different quota targets of renewable portfolio standard: A combination of evolutionary game and system dynamics approach

心理干预 对偶(语法数字) 文件夹 公共经济学 政府(语言学) 干预(咨询) 系统动力学 可再生能源 业务 环境经济学 经济 产业组织 微观经济学 计算机科学 财务 工程类 心理学 文学类 哲学 艺术 电气工程 人工智能 精神科 语言学
作者
Chaoping Zhu,Ruguo Fan,Ming Luo,Yingqing Zhang,Min Qin
出处
期刊:Sustainable Production and Consumption [Elsevier]
卷期号:30: 1053-1069 被引量:26
标识
DOI:10.1016/j.spc.2022.01.029
摘要

The renewable portfolio standard (RPS) is one of the most important policies for China's goals of emission peak and carbon neutralization. Central to advancing RPS is to ensure that stakeholders have the willingness to undertake their respective obligations. As a common instrument for pushing policy forward, policy interventions are frequently used by authorities to motivate and restrain the behaviors of stakeholders. However, it is still unclear how policy interventions under different quota targets affect the behavior strategies of stakeholders involved in RPS. Thus, this paper develops an evolutionary game model considering power sales companies (PSC) and power generation companies (PGC) as the participants. Based on official Chinese statistics and data from previous studies, we employ system dynamics to investigate the impacts of single and dual policy interventions under three quota targets on participants’ behavior strategies. The results indicate that, the evolutionary game always converges to the same evolutionary stable strategy for different initial strategies, and PGC are not as sensitive to quota targets as PSC. In addition, reward or penalty as single policy intervention has diverse impacts on participants, and PSC and PGC behave differently under all the combinations of dual policy interventions. To achieve desired policy goals, government should not only adopt policy interventions according to the stages of RPS implementation and in combination with other policy instruments, but also encourage stakeholders to consciously undertake their respective quota obligations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
橘子完成签到,获得积分10
刚刚
上官若男应助Miracle采纳,获得10
1秒前
云康肖完成签到,获得积分10
1秒前
conlensce发布了新的文献求助10
1秒前
爆米花应助11采纳,获得10
1秒前
天天快乐应助Laplace采纳,获得10
2秒前
通通通发布了新的文献求助10
2秒前
xiaoyi发布了新的文献求助10
2秒前
YY完成签到,获得积分10
2秒前
迅猛2002完成签到,获得积分10
3秒前
3秒前
jinmei2025完成签到,获得积分10
3秒前
斯文败类应助xh采纳,获得10
3秒前
动听衬衫发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
zhu完成签到,获得积分10
4秒前
4秒前
大个应助vioz采纳,获得10
4秒前
糟糕的台灯完成签到,获得积分10
4秒前
5秒前
5秒前
PHHHH完成签到,获得积分10
5秒前
6秒前
司藤完成签到 ,获得积分10
6秒前
6秒前
李爱国应助2哇哇哇采纳,获得10
7秒前
7秒前
7秒前
上好佳完成签到,获得积分10
7秒前
xx完成签到,获得积分10
7秒前
帅气老虎完成签到,获得积分10
8秒前
糖不甜了发布了新的文献求助10
8秒前
liahao完成签到,获得积分10
8秒前
8秒前
Silieze完成签到,获得积分10
8秒前
哈哈哈完成签到,获得积分10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629530
求助须知:如何正确求助?哪些是违规求助? 4720219
关于积分的说明 14969927
捐赠科研通 4787582
什么是DOI,文献DOI怎么找? 2556376
邀请新用户注册赠送积分活动 1517512
关于科研通互助平台的介绍 1478188