趋同(经济学)
计算机科学
分歧(语言学)
节点(物理)
收敛速度
高斯分布
网络拓扑
一致性算法
离散时间和连续时间
拓扑(电路)
算法
度量(数据仓库)
国家(计算机科学)
分布式算法
理论计算机科学
分布式计算
数学
计算机网络
数据挖掘
工程类
物理
频道(广播)
组合数学
哲学
经济
统计
结构工程
量子力学
经济增长
语言学
作者
Xiao-Kang Liu,Yan‐Wu Wang,Jiang‐Wen Xiao,明 政池,Zhi‐Wei Liu
标识
DOI:10.1016/j.jfranklin.2022.01.024
摘要
This paper presents a privacy-preserving average consensus algorithm for a discrete-time network with heterogeneous dynamic nodes in the presence of Gaussian privacy noises. Rényi divergence is used to measure the privacy, and a distributed algorithm is proposed for each node in the network to protect the initial output state and ensure consensus almost surely. The convergence rate of the proposed algorithm relates to the communication topology, dynamics of systems, and decaying rates of privacy noises. Moreover, by increasing neighbors of nodes in the network, the proposed algorithm can strengthen preservation. To demonstrate the theoretical results, a numerical example is carried out on a network of one hundred nodes.
科研通智能强力驱动
Strongly Powered by AbleSci AI