Advanced traffic congestion early warning system based on traffic flow forecasting and extenics evaluation

流量(计算机网络) 计算机科学 区间(图论) 预警系统 交通拥挤 数据挖掘 数学 工程类 运输工程 计算机安全 电信 组合数学
作者
Ping Jiang,Zhenkun Liu,Lifang Zhang,Jianzhou Wang
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:118: 108544-108544 被引量:23
标识
DOI:10.1016/j.asoc.2022.108544
摘要

Traffic congestion is a vital factor hindering travel. As such, developing a reliable traffic congestion early warning system is essential for providing traffic condition supervision and programming. However, previous research has rarely focused on traffic flow characteristics or on providing comprehensive assessments, resulting in poor warning performances. In this study, an innovative traffic congestion early warning system is proposed, comprising point forecasting, characteristic estimate, interval prediction, and comprehensive assessment. In the characteristic assessment phase, eight common statistical distributions are used to fit the characteristics of an original traffic flow parameter series in a training set, and the best fitting results are considered as the basis for building a prediction interval. An extreme learning machine combined with a modified multi-objective dragonfly optimization algorithm and variational mode decomposition is constructed in the point forecasting phase to provide accurate and stable traffic flow parameter forecasting results; two different strategies are used to establish the prediction interval, so as to conduct interval forecasting based on different types of uncertainty information (probability distribution information or known interval information). Extenics evaluation theory is then used in the comprehensive assessment phase to evaluate the traffic congestion level. Simulations of traffic flow parameter series, including simulations of the road density, road occupancy, and average velocity, reveal that the proposed early warning system demonstrates powerful abilities based on its precision and stability. The mean absolute percentage error (MAPE) values of the traffic flow parameters for the three datasets are 3.6265%, 3.7203%, and 4.5100%, respectively. The forecasting accuracy for the traffic congestion level is more than 97% for both point and interval prediction. Thus, this approach can be widely used for personal traffic route planning and the unified management of governmental traffic conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
longlong发布了新的文献求助10
1秒前
冻冻发布了新的文献求助10
1秒前
2秒前
ceeray23应助zz采纳,获得20
3秒前
小二郎应助不爱吃醋采纳,获得10
3秒前
JorieZ发布了新的文献求助10
4秒前
mk发布了新的文献求助10
4秒前
薄荷喵发布了新的文献求助10
4秒前
小二郎应助白华苍松采纳,获得10
4秒前
nhjiebio发布了新的文献求助10
5秒前
5秒前
生统小白发布了新的文献求助10
5秒前
情怀应助无聊的冰之采纳,获得10
5秒前
领导范儿应助贺兴潇采纳,获得10
6秒前
笨笨发布了新的文献求助10
7秒前
无花果应助ChrisKim采纳,获得10
7秒前
8秒前
博dada完成签到,获得积分10
8秒前
科研通AI2S应助陈Eason采纳,获得50
8秒前
chase发布了新的文献求助10
9秒前
17871635733完成签到,获得积分10
10秒前
李山鬼完成签到,获得积分10
10秒前
聪明伊完成签到,获得积分10
10秒前
虚幻易巧完成签到,获得积分10
11秒前
12秒前
13秒前
Hello应助热情依白采纳,获得10
13秒前
坦率的秀发完成签到,获得积分10
14秒前
深情安青应助赵哈哈采纳,获得10
14秒前
16秒前
服部平次发布了新的文献求助10
17秒前
tjypen发布了新的文献求助10
19秒前
19秒前
TAN完成签到,获得积分20
21秒前
King完成签到,获得积分10
21秒前
22秒前
友好白凡发布了新的文献求助10
22秒前
小猪佩奇发布了新的文献求助10
22秒前
22秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3454966
求助须知:如何正确求助?哪些是违规求助? 3050269
关于积分的说明 9020709
捐赠科研通 2738874
什么是DOI,文献DOI怎么找? 1502329
科研通“疑难数据库(出版商)”最低求助积分说明 694480
邀请新用户注册赠送积分活动 693178