Photocatalytic destruction of volatile aromatic compounds by platinized titanium dioxide in relation to the relative effect of the number of methyl groups on the benzene ring

化学 甲苯 二氧化钛 光催化 激进的 光化学 催化作用 二甲苯 吸附 羟基自由基 无机化学 有机化学 化学工程 工程类
作者
Jinjian Zhang,Kumar Vikrant,Ki‐Hyun Kim,Fan Dong
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:822: 153605-153605 被引量:20
标识
DOI:10.1016/j.scitotenv.2022.153605
摘要

The photocatalytic destruction (PCD) of volatile organic compounds (VOC) into environmentally benign compounds is one of the most ideal routes for the management of indoor air quality. It is nevertheless not easy to achieve the mineralization of aromatic VOC through PCD technology because of their recalcitrant structures (i.e., conjugated π benzene ring). In this research, the PCD potential against three model aromatic hydrocarbons (i.e., benzene (B), toluene (T), and m-xylene (X): namely, BTX) has been explored using a titanium dioxide (TiO2) supported platinum (Pt) catalyst after the high-temperature hydrogen (H2)-based reduction (R) pre-treatment (i.e., Pt/TiO2-R). The effects of the key process variables (e.g., relative humidity (RH), oxygen (O2) content, flow rate, VOC concentration, and the co-presence of VOC) on the PCD efficiency and related mechanisms were also assessed in detail. The PCD efficiency is seen to increase with the rise in the increasing number of methyl groups on the benzene ring (in the order of benzene (46.5%), toluene (68.2%), and m-xylene (95.9%)), as the adsorption and activation of the VOC molecule on the photocatalyst surface are promoted by the increased distribution of electrons on the benzene ring. The BTX were oxidated subsequently by the photogenerated reactive oxygen species (ROS), i.e., the hydroxyl radicals (•OH) and superoxide anion radicals (•O2-). The overall results of this study are expected to help expand the applicability of photocatalysis towards air quality management by offering detailed insights into the factors and processes governing the photocatalytic decomposition of aromatic VOCs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
豆dou发布了新的文献求助10
刚刚
丘比特应助SS采纳,获得10
1秒前
1秒前
瑶一瑶完成签到,获得积分10
1秒前
接受所有饼干完成签到,获得积分10
1秒前
富贵儿完成签到,获得积分10
2秒前
MHB应助Khr1stINK采纳,获得10
2秒前
cinderella完成签到,获得积分10
3秒前
4秒前
lin发布了新的文献求助10
5秒前
tmpstlml完成签到,获得积分10
5秒前
LUNWENREQUEST完成签到,获得积分20
5秒前
5秒前
Orange应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
CipherSage应助科研通管家采纳,获得10
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
我是老大应助科研通管家采纳,获得10
6秒前
RC_Wang应助科研通管家采纳,获得10
6秒前
酷波er应助科研通管家采纳,获得30
6秒前
111发布了新的文献求助10
7秒前
keyanlv完成签到,获得积分10
7秒前
富贵儿发布了新的文献求助10
9秒前
冯度翩翩完成签到,获得积分10
9秒前
sweetbearm应助健壮的涑采纳,获得10
9秒前
村里傻小子完成签到,获得积分20
9秒前
田様应助Khr1stINK采纳,获得10
10秒前
傲娇的凡旋应助小周采纳,获得10
11秒前
潇潇潇完成签到 ,获得积分10
11秒前
12秒前
英俊的铭应助XShu采纳,获得10
13秒前
Hello应助一只大肥猫采纳,获得10
14秒前
allyceacheng完成签到,获得积分10
14秒前
科研通AI5应助phd采纳,获得10
15秒前
15秒前
WTaMi完成签到 ,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808