Electricity price forecasting with high penetration of renewable energy using attention-based LSTM network trained by crisscross optimization

可再生能源 计算机科学 电价预测 电力市场 风力发电 波动性(金融) 计量经济学 经济 工程类 电气工程
作者
Anbo Meng,Peng Wang,Guangsong Zhai,Cong Zeng,Shun Chen,Xiaoyi Yang,Hao Yin
出处
期刊:Energy [Elsevier BV]
卷期号:254: 124212-124212 被引量:95
标识
DOI:10.1016/j.energy.2022.124212
摘要

Accurate electricity price forecasts is the common concern of market participants. With the integration of high penetration of wind and solar energy resources into the power system, the renewable energy sources will have a great impact on the electricity price volatility undoubtedly. In this regard, a novel attention mechanism (AM) based electricity price forecasting model for electricity market with high proportion of renewable energy is proposed in this paper. In order to investigate the effect of renewable energy on the electricity price prediction, the wind power generation, solar power generation, predicted load and the historical price series are simultaneously taken as the input features. In the data preprocessing stage, the empirical wavelet transform (EWT) is applied to decompose each of the input features into multiple components to avoid learning the autocorrelation of the original sequence. In the model training stage, a hybrid AM-based long short-term memory network (LSTM) is proposed as the forecasting model, aiming to make full use of the AM to dynamically evaluate the importance of different input feature. Furthermore, the crisscross optimization algorithm (CSO) is adopted to retrain the parameters of fully-connected layer so as to further enhance the generalization ability. The proposed method is validated on the datasets of Danish electricity market with a high proportion of renewable energy, and the experimental results show that the proposed model is superior to other hybrid models involved in this study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaoxi发布了新的文献求助20
1秒前
yangsouth完成签到 ,获得积分10
1秒前
善学以致用应助土豆采纳,获得10
1秒前
1秒前
煎饼果子关注了科研通微信公众号
1秒前
科研通AI6应助啊哈采纳,获得10
1秒前
黄姗姗发布了新的文献求助10
2秒前
慕青应助刚国忠采纳,获得10
4秒前
曾经问雁发布了新的文献求助10
5秒前
任慧娟完成签到,获得积分20
5秒前
小二郎应助花花花花花采纳,获得10
5秒前
研友_LpQGjn完成签到 ,获得积分10
6秒前
6秒前
大模型应助王77采纳,获得10
6秒前
玄博元发布了新的文献求助10
7秒前
7秒前
小马甲应助二三采纳,获得10
7秒前
gyhmm完成签到,获得积分10
9秒前
黄姗姗完成签到,获得积分10
10秒前
reticenturbo完成签到,获得积分10
10秒前
xiaoxi完成签到,获得积分10
10秒前
Running发布了新的文献求助10
11秒前
yearn完成签到,获得积分20
11秒前
xuyang发布了新的文献求助10
12秒前
世外完成签到,获得积分10
12秒前
12秒前
12秒前
CodeCraft应助曾经问雁采纳,获得10
13秒前
jjccaa关注了科研通微信公众号
13秒前
13秒前
陈磨磨磨完成签到,获得积分10
14秒前
14秒前
15秒前
15秒前
15秒前
风飞扬完成签到,获得积分10
15秒前
16秒前
16秒前
ccm应助毕业采纳,获得10
17秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264178
求助须知:如何正确求助?哪些是违规求助? 4424447
关于积分的说明 13773074
捐赠科研通 4299589
什么是DOI,文献DOI怎么找? 2359124
邀请新用户注册赠送积分活动 1355370
关于科研通互助平台的介绍 1316708