Electricity price forecasting with high penetration of renewable energy using attention-based LSTM network trained by crisscross optimization

可再生能源 计算机科学 电价预测 电力市场 风力发电 波动性(金融) 计量经济学 经济 工程类 电气工程
作者
Anbo Meng,Peng Wang,Guangsong Zhai,Cong Zeng,Shun Chen,Xiaoyi Yang,Hao Yin
出处
期刊:Energy [Elsevier]
卷期号:254: 124212-124212 被引量:81
标识
DOI:10.1016/j.energy.2022.124212
摘要

Accurate electricity price forecasts is the common concern of market participants. With the integration of high penetration of wind and solar energy resources into the power system, the renewable energy sources will have a great impact on the electricity price volatility undoubtedly. In this regard, a novel attention mechanism (AM) based electricity price forecasting model for electricity market with high proportion of renewable energy is proposed in this paper. In order to investigate the effect of renewable energy on the electricity price prediction, the wind power generation, solar power generation, predicted load and the historical price series are simultaneously taken as the input features. In the data preprocessing stage, the empirical wavelet transform (EWT) is applied to decompose each of the input features into multiple components to avoid learning the autocorrelation of the original sequence. In the model training stage, a hybrid AM-based long short-term memory network (LSTM) is proposed as the forecasting model, aiming to make full use of the AM to dynamically evaluate the importance of different input feature. Furthermore, the crisscross optimization algorithm (CSO) is adopted to retrain the parameters of fully-connected layer so as to further enhance the generalization ability. The proposed method is validated on the datasets of Danish electricity market with a high proportion of renewable energy, and the experimental results show that the proposed model is superior to other hybrid models involved in this study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Liumingyu完成签到,获得积分10
1秒前
子车雁开发布了新的文献求助10
2秒前
ding应助aaron9898采纳,获得10
2秒前
987654发布了新的文献求助10
2秒前
newwkstudent完成签到,获得积分10
2秒前
xxx发布了新的文献求助10
2秒前
4秒前
李爱国应助开朗寇采纳,获得10
5秒前
sjdove发布了新的文献求助10
5秒前
6秒前
马1112完成签到,获得积分10
6秒前
7秒前
11秒前
yqb发布了新的文献求助10
11秒前
12秒前
CodeCraft应助魁梧的雨双采纳,获得30
12秒前
yolanda发布了新的文献求助10
13秒前
13秒前
15秒前
16秒前
17秒前
CipherSage应助移花宫甲采纳,获得10
17秒前
18秒前
淼焱发布了新的文献求助10
18秒前
18秒前
Q17完成签到 ,获得积分10
18秒前
鱼鱼鱼KYSL完成签到 ,获得积分10
19秒前
19秒前
around完成签到,获得积分10
20秒前
aimeejjr完成签到,获得积分10
21秒前
21秒前
整齐冬瓜发布了新的文献求助10
21秒前
玉铉发布了新的文献求助10
21秒前
wangyun完成签到,获得积分10
21秒前
冬共赴发布了新的文献求助10
22秒前
Ann发布了新的文献求助10
22秒前
豆浆小姐q完成签到,获得积分20
22秒前
23秒前
z123123完成签到,获得积分10
23秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Keywords: explanatory textual sequences, motivation, self-determination, academic performance, math, artificial intelligence 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3267288
求助须知:如何正确求助?哪些是违规求助? 2906812
关于积分的说明 8339691
捐赠科研通 2577377
什么是DOI,文献DOI怎么找? 1400921
科研通“疑难数据库(出版商)”最低求助积分说明 654973
邀请新用户注册赠送积分活动 633892