已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Pest incidence forecasting based on Internet of Things and Long Short-Term Memory Network

有害生物分析 人口 计算机科学 侵染 农业工程 业务 工程类 农学 人口学 生物 社会学 营销
作者
Ching‐Ju Chen,Yuan-Shuo Li,Chen-Yu Tai,Ying-Cheng Chen,Yueh‐Min Huang
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:124: 108895-108895 被引量:15
标识
DOI:10.1016/j.asoc.2022.108895
摘要

The infestation of litchi stink bugs (Tessaratoma papillosa) has always had a significant impact on the yield of longan plantations. Pest control is critical for farmers to detect and timely suppress the occurrence of pests while effectively reducing damages. Environmental factors, climate change in particular, have contributed to the growing population of pests whereas weather can vary in different terrains, locations, and time. Due to the geographical and topographical conditions of Taiwan, this study focuses on investigating fruit plantations on sloping land in subtropics with distinct seasonal changes. The article aims at forecasting meteorological data based on Long short-term memory network (LSTM) and identifying the correlation between pest infestation and environmental factors through Machine Learning (ML). In this section, the structure and experimental process of the research will be outlined. At the first stage, meteorological information of the experimented site is obtained through the self-designed IoT (Internet of Things) system and wireless long-distance transmission technology. Since meteorological information forecasted is displayed in time series, multi-layer LSTM and bidirectional LSTM are used to solve the problem. Finally, environmental data and field surveys conducted for pest surveillance will be employed to forecast the severity of pest infestation through KNN, SVM, and random forest models. The result of the experiment shows that LSTM performs well in weather forecasting with 96% R-Squared values whereas the accuracy rate of pest prediction conducted by Machine Learning (ML) is 85%. The study verifies that meteorological factors do affect pest incidence. For example, the population of litchi stink bugs increase easily under suitable temperature, humidity, and sunlight. LSTM is superior in providing solutions for long-range dependence in statistics. This article shall present regions with shifting weather patterns, meteorological conditions and time length forecasted corresponding to the oceanic climate, as well as the correlation between pest population and environmental factors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无辜的秀发布了新的文献求助10
刚刚
蓝颜完成签到,获得积分10
刚刚
刘秀娟完成签到,获得积分20
7秒前
熬夜猫完成签到,获得积分10
7秒前
无辜的秀发布了新的文献求助10
10秒前
botanist完成签到 ,获得积分0
10秒前
16秒前
17秒前
顺利的飞荷完成签到,获得积分0
17秒前
蓝色天空完成签到,获得积分10
18秒前
西柚完成签到,获得积分10
21秒前
迷路聋五完成签到 ,获得积分10
21秒前
22秒前
汉堡包应助IMIke采纳,获得10
22秒前
在水一方应助科研通管家采纳,获得10
22秒前
柯一一应助科研通管家采纳,获得10
23秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
丘比特应助科研通管家采纳,获得10
23秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
ding应助科研通管家采纳,获得10
23秒前
柯一一应助科研通管家采纳,获得10
23秒前
FashionBoy应助科研通管家采纳,获得10
23秒前
柯一一应助科研通管家采纳,获得10
23秒前
深情安青应助科研通管家采纳,获得10
23秒前
烟花应助科研通管家采纳,获得10
23秒前
24秒前
TiAmo完成签到,获得积分20
24秒前
几两发布了新的文献求助10
26秒前
相对发布了新的文献求助20
27秒前
曙光森林发布了新的文献求助10
27秒前
28秒前
小包子完成签到,获得积分10
29秒前
30秒前
舒远发布了新的文献求助10
31秒前
31秒前
无辜的秀发布了新的文献求助10
34秒前
MchemG应助TXZ06采纳,获得30
35秒前
咩咩应助Maga采纳,获得10
35秒前
35秒前
36秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959835
求助须知:如何正确求助?哪些是违规求助? 3506093
关于积分的说明 11127809
捐赠科研通 3238043
什么是DOI,文献DOI怎么找? 1789445
邀请新用户注册赠送积分活动 871773
科研通“疑难数据库(出版商)”最低求助积分说明 803021