已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Pest incidence forecasting based on Internet of Things and Long Short-Term Memory Network

有害生物分析 人口 计算机科学 侵染 农业工程 业务 工程类 农学 人口学 生物 营销 社会学
作者
Ching‐Ju Chen,Yuan-Shuo Li,Chen-Yu Tai,Ying-Cheng Chen,Yueh‐Min Huang
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:124: 108895-108895 被引量:15
标识
DOI:10.1016/j.asoc.2022.108895
摘要

The infestation of litchi stink bugs (Tessaratoma papillosa) has always had a significant impact on the yield of longan plantations. Pest control is critical for farmers to detect and timely suppress the occurrence of pests while effectively reducing damages. Environmental factors, climate change in particular, have contributed to the growing population of pests whereas weather can vary in different terrains, locations, and time. Due to the geographical and topographical conditions of Taiwan, this study focuses on investigating fruit plantations on sloping land in subtropics with distinct seasonal changes. The article aims at forecasting meteorological data based on Long short-term memory network (LSTM) and identifying the correlation between pest infestation and environmental factors through Machine Learning (ML). In this section, the structure and experimental process of the research will be outlined. At the first stage, meteorological information of the experimented site is obtained through the self-designed IoT (Internet of Things) system and wireless long-distance transmission technology. Since meteorological information forecasted is displayed in time series, multi-layer LSTM and bidirectional LSTM are used to solve the problem. Finally, environmental data and field surveys conducted for pest surveillance will be employed to forecast the severity of pest infestation through KNN, SVM, and random forest models. The result of the experiment shows that LSTM performs well in weather forecasting with 96% R-Squared values whereas the accuracy rate of pest prediction conducted by Machine Learning (ML) is 85%. The study verifies that meteorological factors do affect pest incidence. For example, the population of litchi stink bugs increase easily under suitable temperature, humidity, and sunlight. LSTM is superior in providing solutions for long-range dependence in statistics. This article shall present regions with shifting weather patterns, meteorological conditions and time length forecasted corresponding to the oceanic climate, as well as the correlation between pest population and environmental factors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
重要谷冬发布了新的文献求助10
1秒前
2秒前
6秒前
7秒前
Jasper应助liu星雨采纳,获得10
8秒前
一anjf完成签到,获得积分10
11秒前
采采发布了新的文献求助10
11秒前
重要谷冬完成签到,获得积分20
12秒前
wab完成签到,获得积分0
15秒前
17秒前
Jiayee发布了新的文献求助20
19秒前
天天快乐应助生动的天亦采纳,获得10
23秒前
liu星雨发布了新的文献求助10
24秒前
24秒前
25秒前
柔弱飞雪完成签到,获得积分10
27秒前
科研通AI2S应助047采纳,获得10
28秒前
ZHAOJX发布了新的文献求助10
29秒前
30秒前
32秒前
舒伯特完成签到 ,获得积分10
36秒前
37秒前
流川枫完成签到,获得积分10
37秒前
MXY发布了新的文献求助10
39秒前
39秒前
41秒前
orixero应助球球了采纳,获得10
44秒前
45秒前
47秒前
Xdz发布了新的文献求助10
48秒前
邓希静完成签到 ,获得积分10
49秒前
ZHAOJX完成签到,获得积分20
50秒前
Mine完成签到 ,获得积分10
52秒前
科研通AI2S应助北风语采纳,获得10
54秒前
852应助生动的天亦采纳,获得10
1分钟前
1分钟前
采采完成签到,获得积分10
1分钟前
鲤鱼坤发布了新的文献求助100
1分钟前
1分钟前
1分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136894
求助须知:如何正确求助?哪些是违规求助? 2787866
关于积分的说明 7783497
捐赠科研通 2443945
什么是DOI,文献DOI怎么找? 1299488
科研通“疑难数据库(出版商)”最低求助积分说明 625461
版权声明 600954