Pest incidence forecasting based on Internet of Things and Long Short-Term Memory Network

有害生物分析 人口 计算机科学 侵染 农业工程 业务 工程类 农学 人口学 生物 社会学 营销
作者
Ching‐Ju Chen,Yuan-Shuo Li,Chen-Yu Tai,Ying-Cheng Chen,Yueh‐Min Huang
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:124: 108895-108895 被引量:15
标识
DOI:10.1016/j.asoc.2022.108895
摘要

The infestation of litchi stink bugs (Tessaratoma papillosa) has always had a significant impact on the yield of longan plantations. Pest control is critical for farmers to detect and timely suppress the occurrence of pests while effectively reducing damages. Environmental factors, climate change in particular, have contributed to the growing population of pests whereas weather can vary in different terrains, locations, and time. Due to the geographical and topographical conditions of Taiwan, this study focuses on investigating fruit plantations on sloping land in subtropics with distinct seasonal changes. The article aims at forecasting meteorological data based on Long short-term memory network (LSTM) and identifying the correlation between pest infestation and environmental factors through Machine Learning (ML). In this section, the structure and experimental process of the research will be outlined. At the first stage, meteorological information of the experimented site is obtained through the self-designed IoT (Internet of Things) system and wireless long-distance transmission technology. Since meteorological information forecasted is displayed in time series, multi-layer LSTM and bidirectional LSTM are used to solve the problem. Finally, environmental data and field surveys conducted for pest surveillance will be employed to forecast the severity of pest infestation through KNN, SVM, and random forest models. The result of the experiment shows that LSTM performs well in weather forecasting with 96% R-Squared values whereas the accuracy rate of pest prediction conducted by Machine Learning (ML) is 85%. The study verifies that meteorological factors do affect pest incidence. For example, the population of litchi stink bugs increase easily under suitable temperature, humidity, and sunlight. LSTM is superior in providing solutions for long-range dependence in statistics. This article shall present regions with shifting weather patterns, meteorological conditions and time length forecasted corresponding to the oceanic climate, as well as the correlation between pest population and environmental factors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hh应助科研通管家采纳,获得10
刚刚
Ava应助科研通管家采纳,获得10
刚刚
情怀应助科研通管家采纳,获得10
刚刚
搜集达人应助科研通管家采纳,获得10
刚刚
隐形曼青应助科研通管家采纳,获得10
刚刚
ding应助科研通管家采纳,获得20
刚刚
桐桐应助科研通管家采纳,获得10
刚刚
Hello应助科研通管家采纳,获得10
刚刚
sutharsons应助科研通管家采纳,获得200
1秒前
orixero应助科研通管家采纳,获得10
1秒前
许多知识发布了新的文献求助10
2秒前
FashionBoy应助su采纳,获得10
2秒前
2秒前
运敬完成签到 ,获得积分10
3秒前
XSB完成签到,获得积分10
3秒前
青草蛋糕完成签到 ,获得积分10
3秒前
怡然剑成完成签到,获得积分10
3秒前
3秒前
liyuchen发布了新的文献求助10
4秒前
ipeakkka完成签到,获得积分20
6秒前
马克发布了新的文献求助10
6秒前
赵OO完成签到,获得积分10
6秒前
Yon完成签到 ,获得积分10
7秒前
呆头完成签到,获得积分10
7秒前
科研通AI5应助skier采纳,获得10
8秒前
ywang发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
keyantong完成签到 ,获得积分10
14秒前
booshu完成签到,获得积分10
15秒前
jy发布了新的文献求助10
16秒前
朴斓完成签到,获得积分10
16秒前
科研通AI5应助魏伯安采纳,获得10
19秒前
哈密哈密完成签到,获得积分10
19秒前
19秒前
Ava应助浪迹天涯采纳,获得10
19秒前
20秒前
安南发布了新的文献求助10
20秒前
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824