亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Exploring Multi-Dimension User-Item Interactions With Attentional Knowledge Graph Neural Networks for Recommendation

计算机科学 推荐系统 图形 节点(物理) 理论计算机科学 人工神经网络 知识图 维数(图论) 代表(政治) 数据挖掘 机器学习 情报检索 人工智能 政治学 工程类 政治 法学 纯数学 结构工程 数学
作者
Zhu Wang,Zilong Wang,Xiaona Li,Zhiwen Yu,Bin Guo,Liming Chen,Xingshe Zhou
出处
期刊:IEEE Transactions on Big Data [Institute of Electrical and Electronics Engineers]
卷期号:9 (1): 212-226 被引量:8
标识
DOI:10.1109/tbdata.2022.3154778
摘要

It is commonly agreed that a recommender system should use not only explicit information (i.e., historical user-item interactions) but also implicit information (i.e., incidental information) to deal with the problem of data sparsity and cold start. The knowledge graph (KG), due to its expressive structural and semantic representation capabilities, has been increasingly used for capturing auxiliary information for recommender systems, such as the recent development of graph neural network (GNN) based models for KG-aware recommendation. Nevertheless, these models have the shortcoming of insufficient node interactions or improper node weights during information propagation, which limits the performance of recommender systems. To address this issue, we propose a Multi-dimension Interaction based attentional Knowledge Graph Neural Network (MI-KGNN) for enhanced KG-aware recommendation. MI-KGNN characterizes similarities between users and items through information propagation and aggregation in knowledge graphs. As such, it can optimize the updating direction of node representation by fully exploring multi-dimension interactions among nodes during information propagation. In addition, MI-KGNN introduces a dual attention mechanism, which allows users and items to jointly determine the weight of neighbor nodes. As a result, MI-KGNN can effectively capture and represent both structural (i.e., the topology of interactions) and semantic information (i.e., the weight of interactions) in the knowledge graph. Experimental results show that the proposed model significantly outperforms baseline methods for top-K recommendation. Specifically, the recall rate is increased by 5.78%, 6.66%, and 3.22% on three public datasets, compared with the best performance of existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Thorns完成签到,获得积分10
2秒前
大方大船完成签到,获得积分10
9秒前
小胡爱科研完成签到 ,获得积分10
13秒前
trying完成签到,获得积分10
14秒前
Grayball发布了新的文献求助30
15秒前
嘟嘟完成签到,获得积分10
30秒前
32秒前
科研通AI2S应助目夕采纳,获得10
34秒前
研友_VZG7GZ应助11111采纳,获得10
35秒前
37秒前
Alan完成签到,获得积分10
39秒前
43秒前
53秒前
54秒前
顺利奇迹发布了新的文献求助10
58秒前
我是老大应助Ooo采纳,获得10
1分钟前
海绵宝宝完成签到,获得积分20
1分钟前
1分钟前
冷静的黑桃完成签到,获得积分20
1分钟前
九日橙完成签到 ,获得积分10
1分钟前
非洲大象发布了新的文献求助10
1分钟前
TTTT发布了新的文献求助10
1分钟前
Louie~完成签到,获得积分10
1分钟前
隐形曼青应助舒心盼旋采纳,获得10
1分钟前
Louie~发布了新的文献求助10
1分钟前
1分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
1分钟前
1分钟前
2分钟前
eye发布了新的文献求助20
2分钟前
情怀应助QI采纳,获得10
2分钟前
探子安完成签到,获得积分10
2分钟前
打打应助Jarvis采纳,获得10
2分钟前
刻苦黎云完成签到,获得积分10
2分钟前
eye完成签到,获得积分10
2分钟前
2分钟前
QI发布了新的文献求助10
2分钟前
3分钟前
3分钟前
酷波er应助田柾国采纳,获得10
3分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162300
求助须知:如何正确求助?哪些是违规求助? 2813299
关于积分的说明 7899622
捐赠科研通 2472677
什么是DOI,文献DOI怎么找? 1316491
科研通“疑难数据库(出版商)”最低求助积分说明 631365
版权声明 602142