亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Towards Robust Task Assignment in Mobile Crowdsensing Systems

计算机科学 拥挤感测 任务(项目管理) 移动计算 移动电话技术 计算机网络 计算机安全 移动无线电 经济 管理
作者
Liang Wang,Zhiwen Yu,Kaishun Wu,Dingqi Yang,En Wang,Tian Wang,Yihan Mei,Bin Guo
出处
期刊:IEEE Transactions on Mobile Computing [Institute of Electrical and Electronics Engineers]
卷期号:22 (7): 4297-4313 被引量:23
标识
DOI:10.1109/tmc.2022.3151190
摘要

Mobile Crowdsensing (MCS), which assigns outsourced sensing tasks to volunteer workers, has become an appealing paradigm to collaboratively collect data from surrounding environments. However, during actual task implementation, various unpredictable disruptions are usually inevitable, which might cause a task execution failure and thus impair the benefit of MCS systems. Practically, via reactively shifting the pre-determined assignment scheme in real time, it is usually impossible to develop reassignment schemes without a sacrifice of the system performance. Against this background, we turn to an alternative solution, i.e., proactively creating a robust task assignment scheme offline. In this work, we provide the first attempt to investigate an important and realistic R o B ust T ask A ssignment ( RBTA ) problem in MCS systems, and try to strengthen the assignment scheme's robustness while minimizing the workers' traveling detour cost simultaneously. By leveraging the workers' spatiotemporal mobility, we propose an assignment-graph-based approach. First, an assignment graph is constructed to locally model the assignment relationship between the released MCS tasks and available workers. And then, under the framework of evolutionary multi-tasking, we devise a population-based optimization algorithm, namely EMTRA , to effectively achieve adequate Pareto-optimal schemes. Comprehensive experiments on two real-world datasets clearly validate the effectiveness and applicability of our proposed approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
费老三发布了新的文献求助10
4秒前
慕青应助过时的起眸采纳,获得10
6秒前
知足的憨人丫丫完成签到,获得积分10
13秒前
13秒前
过时的起眸完成签到,获得积分10
15秒前
17秒前
知足的憨人*-*完成签到,获得积分10
31秒前
科研通AI5应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
星辰大海应助丹妮采纳,获得10
1分钟前
1分钟前
1分钟前
丹妮发布了新的文献求助10
1分钟前
RED发布了新的文献求助10
1分钟前
allegiance完成签到 ,获得积分10
1分钟前
科研通AI5应助丹妮采纳,获得10
1分钟前
1分钟前
1分钟前
闪闪雁兰发布了新的文献求助10
1分钟前
爱静静应助Benhnhk21采纳,获得10
2分钟前
2分钟前
丹妮完成签到,获得积分10
2分钟前
丹妮发布了新的文献求助10
2分钟前
10 g发布了新的文献求助10
2分钟前
2分钟前
2分钟前
失眠飞风发布了新的文献求助10
2分钟前
Xiaoxiao应助科研通管家采纳,获得10
3分钟前
失眠飞风完成签到,获得积分10
3分钟前
10 g完成签到,获得积分10
3分钟前
Esperanza发布了新的文献求助10
3分钟前
科研通AI5应助星星采纳,获得30
4分钟前
拼搏的天薇完成签到,获得积分10
4分钟前
4分钟前
星星完成签到,获得积分20
4分钟前
4分钟前
Hoiden完成签到,获得积分10
4分钟前
arsenal完成签到 ,获得积分10
4分钟前
星星发布了新的文献求助30
4分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555736
求助须知:如何正确求助?哪些是违规求助? 3131355
关于积分的说明 9390838
捐赠科研通 2831075
什么是DOI,文献DOI怎么找? 1556317
邀请新用户注册赠送积分活动 726483
科研通“疑难数据库(出版商)”最低求助积分说明 715803