A novel facial emotion recognition method for stress inference of facial nerve paralysis patients

计算机科学 情绪识别 面部表情 面瘫 人工智能 语音识别 面神经 推论 模式识别(心理学) 医学 外科
作者
Cuiting Xu,Chunchuan Yan,Mingzhe Jiang,Fayadh Alenezi,Adi Alhudhaif,Kemal Polat,Wanqing Wu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:197: 116705-116705 被引量:12
标识
DOI:10.1016/j.eswa.2022.116705
摘要

• We built an emotional face video dataset from facial nerve paralysis patients. • The emotions of facial nerve paralysis patients are recognizable via face images. • Transfer learning helps conquer the problem of limited data size in the clinic. • It is feasible to infer emotional stress state of a facial nerve paralysis patient. • Emotion recognition and stress inference may help improve emotional well-being. Facial nerve paralysis results in muscle weakness or complete paralysis on one side of the face. Patients suffer from difficulties in speech, mastication and emotional expression, impacting their quality of life by causing anxiety and depression. The emotional well-being of a facial nerve paralysis patient is usually followed up during and after treatment as part of quality-of-life measures through questionnaires. The commonly used questionnaire may help recognize whether a patient has been through a depressive state but is unable to understand their basic emotions dynamically. Automatic emotion recognition from facial expression images could be a solution to help understand facial nerve paralysis patients, recognize their stress in advance, and assist their treatment. However, their facial expressions are different from healthy people due to facial muscle inability, which makes existing emotion recognition data and models from healthy people invalid. Recent studies on facial images mainly focus on the automatic diagnosis of facial nerve paralysis level and thus lack full basic emotions. Different nerve paralysis levels also increase inconsistency in expressing the same emotion among patients. To enable emotion recognition and stress inference from facial images for facial nerve paralysis patients, we established an emotional facial expressions dataset from 45 patients with six basic emotions. The problem of limited data size in building a deep learning model VGGNet was solved by leveraging facial images from healthy people in transfer learning. Our proposed model reached an accuracy of 66.58% recognizing basic emotions from patients, which was 19.63% higher than the model trained only from the facial nerve paralysis data and was 42.69% higher than testing directly on the model trained from healthy data. Logically, the results show that patients with less severe facial nerve paralysis reached a higher emotion recognition accuracy. Additionally, although disgust, anger, and fear were especially challenging to specify from each other, the accuracy was 85.97% recognizing any stress-related negative emotions, making stress inference feasible.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wzl发布了新的文献求助10
刚刚
Windycityguy发布了新的文献求助10
刚刚
搜集达人应助猫的淡淡采纳,获得30
刚刚
1秒前
科研通AI6应助一包辣条采纳,获得10
1秒前
1秒前
wb完成签到 ,获得积分10
1秒前
2秒前
走走发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
4秒前
葉落葉飄完成签到,获得积分10
4秒前
动听元彤完成签到,获得积分10
4秒前
默默的聪健完成签到,获得积分10
5秒前
5秒前
5秒前
ZZH发布了新的文献求助10
5秒前
6秒前
yelaikuhun74发布了新的文献求助10
6秒前
GDY完成签到,获得积分10
6秒前
7秒前
何休槊发布了新的文献求助20
7秒前
7秒前
Cactus应助cat_head采纳,获得10
7秒前
HonamC完成签到,获得积分10
8秒前
Windycityguy完成签到,获得积分10
8秒前
科研通AI5应助bluesiryao采纳,获得10
8秒前
我爱紫丁香完成签到,获得积分10
9秒前
JJ完成签到,获得积分10
9秒前
Hoooo...发布了新的文献求助10
10秒前
asd发布了新的文献求助10
10秒前
10秒前
有足量NaCl发布了新的文献求助10
10秒前
研友_VZG7GZ应助eternity136采纳,获得10
11秒前
11秒前
pomelost发布了新的文献求助10
11秒前
煎饼果子完成签到,获得积分10
12秒前
mj完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403