A novel facial emotion recognition method for stress inference of facial nerve paralysis patients

计算机科学 情绪识别 面部表情 面瘫 人工智能 语音识别 面神经 推论 模式识别(心理学) 医学 外科
作者
Cuiting Xu,Chunchuan Yan,Mingzhe Jiang,Fayadh Alenezi,Adi Alhudhaif,Kemal Polat,Wanqing Wu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:197: 116705-116705 被引量:12
标识
DOI:10.1016/j.eswa.2022.116705
摘要

• We built an emotional face video dataset from facial nerve paralysis patients. • The emotions of facial nerve paralysis patients are recognizable via face images. • Transfer learning helps conquer the problem of limited data size in the clinic. • It is feasible to infer emotional stress state of a facial nerve paralysis patient. • Emotion recognition and stress inference may help improve emotional well-being. Facial nerve paralysis results in muscle weakness or complete paralysis on one side of the face. Patients suffer from difficulties in speech, mastication and emotional expression, impacting their quality of life by causing anxiety and depression. The emotional well-being of a facial nerve paralysis patient is usually followed up during and after treatment as part of quality-of-life measures through questionnaires. The commonly used questionnaire may help recognize whether a patient has been through a depressive state but is unable to understand their basic emotions dynamically. Automatic emotion recognition from facial expression images could be a solution to help understand facial nerve paralysis patients, recognize their stress in advance, and assist their treatment. However, their facial expressions are different from healthy people due to facial muscle inability, which makes existing emotion recognition data and models from healthy people invalid. Recent studies on facial images mainly focus on the automatic diagnosis of facial nerve paralysis level and thus lack full basic emotions. Different nerve paralysis levels also increase inconsistency in expressing the same emotion among patients. To enable emotion recognition and stress inference from facial images for facial nerve paralysis patients, we established an emotional facial expressions dataset from 45 patients with six basic emotions. The problem of limited data size in building a deep learning model VGGNet was solved by leveraging facial images from healthy people in transfer learning. Our proposed model reached an accuracy of 66.58% recognizing basic emotions from patients, which was 19.63% higher than the model trained only from the facial nerve paralysis data and was 42.69% higher than testing directly on the model trained from healthy data. Logically, the results show that patients with less severe facial nerve paralysis reached a higher emotion recognition accuracy. Additionally, although disgust, anger, and fear were especially challenging to specify from each other, the accuracy was 85.97% recognizing any stress-related negative emotions, making stress inference feasible.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
如意的馒头完成签到 ,获得积分10
1秒前
子睿发布了新的文献求助10
1秒前
酷波er应助花痴的电灯泡采纳,获得10
1秒前
2秒前
3秒前
搜集达人应助Menta1y采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
代桃完成签到,获得积分10
4秒前
ghy完成签到 ,获得积分10
5秒前
彩色开山完成签到,获得积分10
6秒前
热心的秋莲完成签到,获得积分10
6秒前
寒梅恋雪发布了新的文献求助10
7秒前
ding应助外向的醉易采纳,获得10
7秒前
可问春风完成签到,获得积分10
8秒前
体贴凌柏完成签到,获得积分10
9秒前
贫穷的塔姆完成签到,获得积分10
10秒前
我在南湾湖边完成签到,获得积分10
10秒前
快乐的雨竹完成签到,获得积分10
11秒前
虚心的雁完成签到,获得积分10
12秒前
浩浩完成签到 ,获得积分0
13秒前
14秒前
lpx43完成签到,获得积分10
14秒前
zz2905发布了新的文献求助10
17秒前
一蓑烟雨完成签到,获得积分10
17秒前
17秒前
19秒前
崔崔发布了新的文献求助10
20秒前
ff不吃芹菜完成签到,获得积分10
21秒前
叶子完成签到,获得积分10
21秒前
唐唐完成签到,获得积分10
22秒前
123发布了新的文献求助10
22秒前
25秒前
朵朵完成签到,获得积分10
27秒前
发呆的小号完成签到 ,获得积分10
27秒前
充电宝应助原本采纳,获得10
29秒前
山260完成签到 ,获得积分10
29秒前
badada完成签到,获得积分10
29秒前
田様应助科研通管家采纳,获得10
31秒前
大模型应助科研通管家采纳,获得10
31秒前
科研通AI2S应助科研通管家采纳,获得10
31秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038235
求助须知:如何正确求助?哪些是违规求助? 3575992
关于积分的说明 11374009
捐赠科研通 3305760
什么是DOI,文献DOI怎么找? 1819276
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022