清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A novel facial emotion recognition method for stress inference of facial nerve paralysis patients

计算机科学 情绪识别 面部表情 面瘫 人工智能 语音识别 面神经 推论 模式识别(心理学) 医学 外科
作者
Cuiting Xu,Chunchuan Yan,Mingzhe Jiang,Fayadh Alenezi,Adi Alhudhaif,Kemal Polat,Wanqing Wu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:197: 116705-116705 被引量:12
标识
DOI:10.1016/j.eswa.2022.116705
摘要

• We built an emotional face video dataset from facial nerve paralysis patients. • The emotions of facial nerve paralysis patients are recognizable via face images. • Transfer learning helps conquer the problem of limited data size in the clinic. • It is feasible to infer emotional stress state of a facial nerve paralysis patient. • Emotion recognition and stress inference may help improve emotional well-being. Facial nerve paralysis results in muscle weakness or complete paralysis on one side of the face. Patients suffer from difficulties in speech, mastication and emotional expression, impacting their quality of life by causing anxiety and depression. The emotional well-being of a facial nerve paralysis patient is usually followed up during and after treatment as part of quality-of-life measures through questionnaires. The commonly used questionnaire may help recognize whether a patient has been through a depressive state but is unable to understand their basic emotions dynamically. Automatic emotion recognition from facial expression images could be a solution to help understand facial nerve paralysis patients, recognize their stress in advance, and assist their treatment. However, their facial expressions are different from healthy people due to facial muscle inability, which makes existing emotion recognition data and models from healthy people invalid. Recent studies on facial images mainly focus on the automatic diagnosis of facial nerve paralysis level and thus lack full basic emotions. Different nerve paralysis levels also increase inconsistency in expressing the same emotion among patients. To enable emotion recognition and stress inference from facial images for facial nerve paralysis patients, we established an emotional facial expressions dataset from 45 patients with six basic emotions. The problem of limited data size in building a deep learning model VGGNet was solved by leveraging facial images from healthy people in transfer learning. Our proposed model reached an accuracy of 66.58% recognizing basic emotions from patients, which was 19.63% higher than the model trained only from the facial nerve paralysis data and was 42.69% higher than testing directly on the model trained from healthy data. Logically, the results show that patients with less severe facial nerve paralysis reached a higher emotion recognition accuracy. Additionally, although disgust, anger, and fear were especially challenging to specify from each other, the accuracy was 85.97% recognizing any stress-related negative emotions, making stress inference feasible.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤劳的颤完成签到 ,获得积分10
2秒前
9秒前
ceeray23发布了新的文献求助20
13秒前
亭2007完成签到 ,获得积分10
14秒前
24秒前
28秒前
科研通AI2S应助科研通管家采纳,获得10
34秒前
34秒前
斯文败类应助雪山飞龙采纳,获得10
47秒前
qianci2009完成签到,获得积分10
1分钟前
共享精神应助sh1ro采纳,获得10
1分钟前
hahaha完成签到 ,获得积分10
1分钟前
1分钟前
1437594843完成签到 ,获得积分10
1分钟前
清脆钧发布了新的文献求助10
1分钟前
雪山飞龙完成签到,获得积分10
1分钟前
牵绊完成签到 ,获得积分10
1分钟前
坦率雪枫完成签到 ,获得积分10
1分钟前
优秀的尔风完成签到,获得积分10
1分钟前
满意机器猫完成签到 ,获得积分10
1分钟前
情怀应助清脆钧采纳,获得10
1分钟前
Alisha完成签到,获得积分10
1分钟前
苳苳完成签到 ,获得积分10
2分钟前
2分钟前
清脆钧发布了新的文献求助10
2分钟前
小巧弘文完成签到 ,获得积分10
2分钟前
青山完成签到,获得积分10
2分钟前
清脆钧发布了新的文献求助10
2分钟前
allrubbish完成签到,获得积分10
2分钟前
墨言无殇完成签到 ,获得积分10
2分钟前
传奇3应助清脆钧采纳,获得10
2分钟前
3分钟前
丘比特应助海藏进星辰采纳,获得10
3分钟前
蝎子莱莱xth完成签到,获得积分10
3分钟前
wbh发布了新的文献求助10
3分钟前
辛勤的泽洋完成签到 ,获得积分10
3分钟前
氢锂钠钾铷铯钫完成签到,获得积分10
3分钟前
3分钟前
Square完成签到,获得积分10
3分钟前
3分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990629
求助须知:如何正确求助?哪些是违规求助? 3532220
关于积分的说明 11256552
捐赠科研通 3271057
什么是DOI,文献DOI怎么找? 1805229
邀请新用户注册赠送积分活动 882302
科研通“疑难数据库(出版商)”最低求助积分说明 809234