亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A novel facial emotion recognition method for stress inference of facial nerve paralysis patients

计算机科学 情绪识别 面部表情 面瘫 人工智能 语音识别 面神经 推论 模式识别(心理学) 医学 外科
作者
Cuiting Xu,Chunchuan Yan,Mingzhe Jiang,Fayadh Alenezi,Adi Alhudhaif,Kemal Polat,Wanqing Wu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:197: 116705-116705 被引量:12
标识
DOI:10.1016/j.eswa.2022.116705
摘要

• We built an emotional face video dataset from facial nerve paralysis patients. • The emotions of facial nerve paralysis patients are recognizable via face images. • Transfer learning helps conquer the problem of limited data size in the clinic. • It is feasible to infer emotional stress state of a facial nerve paralysis patient. • Emotion recognition and stress inference may help improve emotional well-being. Facial nerve paralysis results in muscle weakness or complete paralysis on one side of the face. Patients suffer from difficulties in speech, mastication and emotional expression, impacting their quality of life by causing anxiety and depression. The emotional well-being of a facial nerve paralysis patient is usually followed up during and after treatment as part of quality-of-life measures through questionnaires. The commonly used questionnaire may help recognize whether a patient has been through a depressive state but is unable to understand their basic emotions dynamically. Automatic emotion recognition from facial expression images could be a solution to help understand facial nerve paralysis patients, recognize their stress in advance, and assist their treatment. However, their facial expressions are different from healthy people due to facial muscle inability, which makes existing emotion recognition data and models from healthy people invalid. Recent studies on facial images mainly focus on the automatic diagnosis of facial nerve paralysis level and thus lack full basic emotions. Different nerve paralysis levels also increase inconsistency in expressing the same emotion among patients. To enable emotion recognition and stress inference from facial images for facial nerve paralysis patients, we established an emotional facial expressions dataset from 45 patients with six basic emotions. The problem of limited data size in building a deep learning model VGGNet was solved by leveraging facial images from healthy people in transfer learning. Our proposed model reached an accuracy of 66.58% recognizing basic emotions from patients, which was 19.63% higher than the model trained only from the facial nerve paralysis data and was 42.69% higher than testing directly on the model trained from healthy data. Logically, the results show that patients with less severe facial nerve paralysis reached a higher emotion recognition accuracy. Additionally, although disgust, anger, and fear were especially challenging to specify from each other, the accuracy was 85.97% recognizing any stress-related negative emotions, making stress inference feasible.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dave发布了新的文献求助10
25秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Aaron完成签到 ,获得积分0
1分钟前
1分钟前
3分钟前
Liufgui应助Dave采纳,获得10
3分钟前
Benhnhk21发布了新的文献求助10
3分钟前
yydragen应助yyds采纳,获得10
4分钟前
Hisam完成签到,获得积分10
4分钟前
lhy完成签到,获得积分10
4分钟前
lhy发布了新的文献求助10
4分钟前
4分钟前
积极的台灯应助Benhnhk21采纳,获得10
4分钟前
Hisam发布了新的文献求助10
4分钟前
yyds完成签到,获得积分0
4分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
木木完成签到 ,获得积分10
5分钟前
5分钟前
董可以发布了新的文献求助10
5分钟前
小马甲应助董可以采纳,获得10
5分钟前
5分钟前
Boren发布了新的文献求助10
5分钟前
梨子完成签到,获得积分10
6分钟前
Boren完成签到,获得积分10
6分钟前
WerWu完成签到,获得积分10
7分钟前
彭于晏应助Dc采纳,获得10
7分钟前
8分钟前
情怀应助科研通管家采纳,获得10
9分钟前
9分钟前
Dc发布了新的文献求助10
9分钟前
Dc完成签到,获得积分10
9分钟前
10分钟前
幽默平安发布了新的文献求助10
10分钟前
科研通AI2S应助科研通管家采纳,获得10
11分钟前
12分钟前
12分钟前
12分钟前
小禾一定行完成签到 ,获得积分10
12分钟前
inkoin发布了新的文献求助10
12分钟前
科研通AI2S应助科研通管家采纳,获得10
13分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990290
求助须知:如何正确求助?哪些是违规求助? 3532146
关于积分的说明 11256472
捐赠科研通 3271042
什么是DOI,文献DOI怎么找? 1805197
邀请新用户注册赠送积分活动 882302
科研通“疑难数据库(出版商)”最低求助积分说明 809234