亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A novel facial emotion recognition method for stress inference of facial nerve paralysis patients

计算机科学 情绪识别 面部表情 面瘫 人工智能 语音识别 面神经 推论 模式识别(心理学) 医学 外科
作者
Cuiting Xu,Chunchuan Yan,Mingzhe Jiang,Fayadh Alenezi,Adi Alhudhaif,Kemal Polat,Wanqing Wu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:197: 116705-116705 被引量:12
标识
DOI:10.1016/j.eswa.2022.116705
摘要

• We built an emotional face video dataset from facial nerve paralysis patients. • The emotions of facial nerve paralysis patients are recognizable via face images. • Transfer learning helps conquer the problem of limited data size in the clinic. • It is feasible to infer emotional stress state of a facial nerve paralysis patient. • Emotion recognition and stress inference may help improve emotional well-being. Facial nerve paralysis results in muscle weakness or complete paralysis on one side of the face. Patients suffer from difficulties in speech, mastication and emotional expression, impacting their quality of life by causing anxiety and depression. The emotional well-being of a facial nerve paralysis patient is usually followed up during and after treatment as part of quality-of-life measures through questionnaires. The commonly used questionnaire may help recognize whether a patient has been through a depressive state but is unable to understand their basic emotions dynamically. Automatic emotion recognition from facial expression images could be a solution to help understand facial nerve paralysis patients, recognize their stress in advance, and assist their treatment. However, their facial expressions are different from healthy people due to facial muscle inability, which makes existing emotion recognition data and models from healthy people invalid. Recent studies on facial images mainly focus on the automatic diagnosis of facial nerve paralysis level and thus lack full basic emotions. Different nerve paralysis levels also increase inconsistency in expressing the same emotion among patients. To enable emotion recognition and stress inference from facial images for facial nerve paralysis patients, we established an emotional facial expressions dataset from 45 patients with six basic emotions. The problem of limited data size in building a deep learning model VGGNet was solved by leveraging facial images from healthy people in transfer learning. Our proposed model reached an accuracy of 66.58% recognizing basic emotions from patients, which was 19.63% higher than the model trained only from the facial nerve paralysis data and was 42.69% higher than testing directly on the model trained from healthy data. Logically, the results show that patients with less severe facial nerve paralysis reached a higher emotion recognition accuracy. Additionally, although disgust, anger, and fear were especially challenging to specify from each other, the accuracy was 85.97% recognizing any stress-related negative emotions, making stress inference feasible.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
17秒前
17秒前
18秒前
Cmqq发布了新的文献求助10
23秒前
wrry完成签到,获得积分10
24秒前
情怀应助科研通管家采纳,获得10
28秒前
顾矜应助科研通管家采纳,获得10
28秒前
BowieHuang应助科研通管家采纳,获得10
28秒前
陶醉的烤鸡完成签到 ,获得积分10
29秒前
丘比特应助Cmqq采纳,获得10
33秒前
39秒前
42秒前
小年小少发布了新的文献求助10
42秒前
Dr. Chen发布了新的文献求助10
45秒前
令狐冲完成签到 ,获得积分10
45秒前
Cassiel完成签到,获得积分10
48秒前
hahahan完成签到 ,获得积分10
51秒前
上官若男应助Passion采纳,获得10
1分钟前
1分钟前
lll完成签到 ,获得积分10
1分钟前
wrry发布了新的文献求助10
1分钟前
1分钟前
桃桃发布了新的文献求助30
1分钟前
Passion发布了新的文献求助10
1分钟前
ww完成签到 ,获得积分10
1分钟前
绿毛怪完成签到,获得积分10
1分钟前
桃桃完成签到,获得积分10
1分钟前
1分钟前
昵称已挥发发布了新的文献求助200
1分钟前
优美紫槐应助满意的世界采纳,获得100
1分钟前
2分钟前
2分钟前
Cmqq发布了新的文献求助10
2分钟前
科研通AI6应助满意的世界采纳,获得20
2分钟前
2分钟前
ding应助Cmqq采纳,获得10
2分钟前
2分钟前
2分钟前
Krim完成签到 ,获得积分0
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599747
求助须知:如何正确求助?哪些是违规求助? 4685478
关于积分的说明 14838528
捐赠科研通 4670257
什么是DOI,文献DOI怎么找? 2538191
邀请新用户注册赠送积分活动 1505527
关于科研通互助平台的介绍 1470898