已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A novel facial emotion recognition method for stress inference of facial nerve paralysis patients

计算机科学 情绪识别 面部表情 面瘫 人工智能 语音识别 面神经 推论 模式识别(心理学) 医学 外科
作者
Cuiting Xu,Chunchuan Yan,Mingzhe Jiang,Fayadh Alenezi,Adi Alhudhaif,Kemal Polat,Wanqing Wu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:197: 116705-116705 被引量:12
标识
DOI:10.1016/j.eswa.2022.116705
摘要

• We built an emotional face video dataset from facial nerve paralysis patients. • The emotions of facial nerve paralysis patients are recognizable via face images. • Transfer learning helps conquer the problem of limited data size in the clinic. • It is feasible to infer emotional stress state of a facial nerve paralysis patient. • Emotion recognition and stress inference may help improve emotional well-being. Facial nerve paralysis results in muscle weakness or complete paralysis on one side of the face. Patients suffer from difficulties in speech, mastication and emotional expression, impacting their quality of life by causing anxiety and depression. The emotional well-being of a facial nerve paralysis patient is usually followed up during and after treatment as part of quality-of-life measures through questionnaires. The commonly used questionnaire may help recognize whether a patient has been through a depressive state but is unable to understand their basic emotions dynamically. Automatic emotion recognition from facial expression images could be a solution to help understand facial nerve paralysis patients, recognize their stress in advance, and assist their treatment. However, their facial expressions are different from healthy people due to facial muscle inability, which makes existing emotion recognition data and models from healthy people invalid. Recent studies on facial images mainly focus on the automatic diagnosis of facial nerve paralysis level and thus lack full basic emotions. Different nerve paralysis levels also increase inconsistency in expressing the same emotion among patients. To enable emotion recognition and stress inference from facial images for facial nerve paralysis patients, we established an emotional facial expressions dataset from 45 patients with six basic emotions. The problem of limited data size in building a deep learning model VGGNet was solved by leveraging facial images from healthy people in transfer learning. Our proposed model reached an accuracy of 66.58% recognizing basic emotions from patients, which was 19.63% higher than the model trained only from the facial nerve paralysis data and was 42.69% higher than testing directly on the model trained from healthy data. Logically, the results show that patients with less severe facial nerve paralysis reached a higher emotion recognition accuracy. Additionally, although disgust, anger, and fear were especially challenging to specify from each other, the accuracy was 85.97% recognizing any stress-related negative emotions, making stress inference feasible.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ring完成签到 ,获得积分10
3秒前
浅黑色饕餮完成签到,获得积分10
3秒前
十一发布了新的文献求助30
6秒前
9秒前
少虡发布了新的文献求助10
10秒前
13秒前
yinan完成签到,获得积分10
20秒前
lixia完成签到 ,获得积分10
21秒前
22秒前
23秒前
Gryphon发布了新的文献求助30
25秒前
KSDalton发布了新的文献求助10
29秒前
believe完成签到,获得积分10
32秒前
十一完成签到,获得积分10
34秒前
柯伯云给柯伯云的求助进行了留言
35秒前
席康发布了新的文献求助10
35秒前
Gryphon完成签到,获得积分10
37秒前
不安的晓灵完成签到 ,获得积分10
40秒前
文献文献完成签到 ,获得积分10
44秒前
47秒前
可爱的函函应助orbitvox采纳,获得10
50秒前
57秒前
科研通AI2S应助lumu采纳,获得10
1分钟前
orbitvox发布了新的文献求助10
1分钟前
动人的火龙果完成签到,获得积分10
1分钟前
YZH应助席康采纳,获得10
1分钟前
DrW1111完成签到 ,获得积分10
1分钟前
青青完成签到 ,获得积分10
1分钟前
嗯哼完成签到,获得积分0
1分钟前
1分钟前
爱科研的小周完成签到 ,获得积分10
1分钟前
枯叶蝶发布了新的文献求助10
1分钟前
1分钟前
彧辰完成签到 ,获得积分10
1分钟前
1分钟前
归海子轩完成签到 ,获得积分10
1分钟前
小小楊完成签到 ,获得积分10
1分钟前
du完成签到 ,获得积分10
1分钟前
slycmd发布了新的文献求助10
1分钟前
ranj完成签到,获得积分10
1分钟前
高分求助中
Earth System Geophysics 1000
Semiconductor Process Reliability in Practice 650
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3207671
求助须知:如何正确求助?哪些是违规求助? 2856984
关于积分的说明 8108052
捐赠科研通 2522565
什么是DOI,文献DOI怎么找? 1355756
科研通“疑难数据库(出版商)”最低求助积分说明 642234
邀请新用户注册赠送积分活动 613602