清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Evaluation of hydraulic fracturing effect on coalbed methane reservoir based on deep learning method considering physical constraints

水力压裂 石油工程 煤层气 磁导率 人工神经网络 地质学 动态数据 断裂(地质) 储层模拟 水文地质学 岩土工程 工程类 机器学习 计算机科学 煤矿开采 程序设计语言 废物管理 生物 遗传学
作者
Hongqing Song,Shuyi Du,Jiaosheng Yang,Yang Zhao,Mingxu Yu
出处
期刊:Journal of Petroleum Science and Engineering [Elsevier]
卷期号:212: 110360-110360 被引量:27
标识
DOI:10.1016/j.petrol.2022.110360
摘要

Data-driven deep learning algorithms have shown good performance in the field of petroleum industry. However, some research has begun to be keen to incorporate physical laws into machine learning algorithms, so as to establish a “data + physical laws” dual-drive model, which can more effectively guide deep learning. In this study, reservoir geology, hydraulic fracturing, and dynamic production data were considered to establish a fracturing effect evaluation model for coalbed methane reservoirs. The combined network is designed to fully excavate the characteristics of dynamic and static data and solve the problem that the network ignores static data due to excessive dimensions of dynamic data. Furthermore, a neural network considering physical constraints was developed to better evaluate the fracturing effect by incorporating the initial conditions and expert experiences into the loss function. The deep learning-based fracturing effect evaluation model not only fits data-driven methods including reservoir geology, hydraulic fracturing and dynamic production data, but also adheres to the guidance of physical constraints. The experimental results show that compared with the conventional machine learning methods, the fracturing effect evaluation model has better performance on the prediction of crack half-length and permeability after fracturing due to combined network and physical constraints, with the overall RMSE of 6.11 m and 0.533mD respectively. In addition, through the analysis of influencing factors, it can be obtained that reservoir geology and hydraulic fracturing parameters can contribute more than 90% to the prediction of fracture half-length. Moreover, reservoir geology, hydraulic fracturing and dynamic data all play an important role in the permeability after fracturing, among which dynamic data has the highest contribution rate, with more than 40%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
程翠丝发布了新的文献求助20
8秒前
creep2020完成签到,获得积分10
13秒前
斯文败类应助baobeikk采纳,获得10
13秒前
Andy_2024应助科研通管家采纳,获得30
15秒前
18秒前
22秒前
星火发布了新的文献求助10
23秒前
baobeikk发布了新的文献求助10
25秒前
27秒前
无名完成签到 ,获得积分10
30秒前
天天快乐应助星火采纳,获得10
33秒前
小强完成签到 ,获得积分10
35秒前
38秒前
38秒前
汉堡包应助baobeikk采纳,获得10
38秒前
46秒前
suiwuya完成签到,获得积分10
51秒前
baobeikk发布了新的文献求助10
52秒前
朗月发布了新的文献求助30
54秒前
万能图书馆应助baobeikk采纳,获得10
1分钟前
1分钟前
baobeikk发布了新的文献求助10
1分钟前
1分钟前
川藏客完成签到 ,获得积分10
1分钟前
zhongu发布了新的文献求助10
1分钟前
搜集达人应助baobeikk采纳,获得10
1分钟前
1分钟前
baobeikk发布了新的文献求助10
1分钟前
深情安青应助baobeikk采纳,获得10
2分钟前
分析完成签到 ,获得积分10
2分钟前
404NotFOUND应助科研通管家采纳,获得10
2分钟前
2分钟前
404NotFOUND应助科研通管家采纳,获得10
2分钟前
2分钟前
baobeikk发布了新的文献求助10
2分钟前
滕皓轩完成签到 ,获得积分10
2分钟前
无悔完成签到 ,获得积分10
2分钟前
朴素的山蝶完成签到 ,获得积分10
2分钟前
研友_8y2G0L完成签到,获得积分10
3分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466837
求助须知:如何正确求助?哪些是违规求助? 3059656
关于积分的说明 9067347
捐赠科研通 2750142
什么是DOI,文献DOI怎么找? 1509065
科研通“疑难数据库(出版商)”最低求助积分说明 697124
邀请新用户注册赠送积分活动 696913