Fault monitoring in passive optical network through the integration of machine learning and fiber sensors

光时域反射计 计算机科学 无源光网络 传输(电信) 光纤分路器 光纤 宽带 断层(地质) 光纤传感器 光纤布拉格光栅 实时计算 电子工程 波分复用 电信 光学 工程类 波长 地震学 地质学 物理
作者
Auwalu Usman,Nadiatulhuda Zulkifli,Mohd Rashidi Salim,K. Khairi
出处
期刊:International Journal of Communication Systems [Wiley]
卷期号:35 (9) 被引量:10
标识
DOI:10.1002/dac.5134
摘要

Summary As the deployment of fiber‐based broadband networks continues to accelerate, the number of network facilities too is increasing exponentially. The network of optical fiber cables keeps growing as the number of passive optical network (PON) customers increases, eventually leading to unforeseen faults. Several solutions are offered for monitoring the optical link in PON with the optical time‐domain reflectometer (OTDR) as the most common for point‐to‐point optical link characterization. However, the OTDR approach has been found to be inadequate for point to multipoint network fault characterizations due to numerous back‐reflected signals converging at the power splitter that cannot be identified simultaneously by the OTDR detector. Several machine learning (ML) methods have recently been introduced for successful monitoring of optical communication links, but much of the ML technique depends on data from network transceivers to train ML algorithms to identify and detect faults. However, the use of data information for monitoring purposes can have an impact on the consistency of the services offered. In this article, we consider the deployment of the fiber Bragg grating sensor to acquire the monitoring data samples used to train the ML technique for effective link characterization. The proposed solution has the advantage of having a separate monitoring source that is independent of the data transmission signal and guarantees transparent transmission of information. The proposed ML‐based technique shows up to 99% precision for the identification of fiber defect in the PON optical distribution network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WCheng完成签到,获得积分10
2秒前
2秒前
4秒前
淳于安筠完成签到,获得积分10
5秒前
6秒前
7秒前
8秒前
路一程山水相逢完成签到,获得积分10
8秒前
李健应助敏感的盼夏采纳,获得10
8秒前
shunxinruyi发布了新的文献求助20
8秒前
9秒前
9秒前
Kavin完成签到,获得积分10
10秒前
大大泡泡完成签到,获得积分10
10秒前
10秒前
研友_VZG7GZ应助天涯赤子采纳,获得10
10秒前
刘佳会发布了新的文献求助10
10秒前
仔仔发布了新的文献求助10
12秒前
冲鸭完成签到,获得积分10
17秒前
18秒前
赘婿应助qqq采纳,获得10
21秒前
搜集达人应助刘佳会采纳,获得10
21秒前
21秒前
21秒前
天涯赤子发布了新的文献求助10
22秒前
莹莹啊发布了新的文献求助10
24秒前
24秒前
25秒前
Yingkun_Xu发布了新的文献求助10
25秒前
26秒前
小于完成签到,获得积分10
26秒前
源源完成签到,获得积分20
28秒前
30秒前
泥泞完成签到 ,获得积分10
31秒前
无语的康乃馨完成签到,获得积分10
33秒前
34秒前
34秒前
35秒前
36秒前
37秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3236135
求助须知:如何正确求助?哪些是违规求助? 2881861
关于积分的说明 8224025
捐赠科研通 2549869
什么是DOI,文献DOI怎么找? 1378680
科研通“疑难数据库(出版商)”最低求助积分说明 648430
邀请新用户注册赠送积分活动 623871