亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A comprehensive survey of clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects

计算机科学 聚类分析 CURE数据聚类算法 共识聚类 机器学习 人工智能 相关聚类 高维数据聚类 数据流聚类 树冠聚类算法 约束聚类 模糊聚类 数据挖掘 数据科学 概念聚类
作者
Absalom E. Ezugwu,Abiodun M. Ikotun,Olaide O. Oyelade,Laith Abualigah,Jeffrey O. Agushaka,Christopher Ifeanyi Eke,Andronicus A. Akinyelu
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:110: 104743-104743 被引量:417
标识
DOI:10.1016/j.engappai.2022.104743
摘要

Clustering is an essential tool in data mining research and applications. It is the subject of active research in many fields of study, such as computer science, data science, statistics, pattern recognition, artificial intelligence, and machine learning. Several clustering techniques have been proposed and implemented, and most of them successfully find excellent quality or optimal clustering results in the domains mentioned earlier. However, there has been a gradual shift in the choice of clustering methods among domain experts and practitioners alike, which is precipitated by the fact that most traditional clustering algorithms still depend on the number of clusters provided a priori. These conventional clustering algorithms cannot effectively handle real-world data clustering analysis problems where the number of clusters in data objects cannot be easily identified. Also, they cannot effectively manage problems where the optimal number of clusters for a high-dimensional dataset cannot be easily determined. Therefore, there is a need for improved, flexible, and efficient clustering techniques. Recently, a variety of efficient clustering algorithms have been proposed in the literature, and these algorithms produced good results when evaluated on real-world clustering problems. This study presents an up-to-date systematic and comprehensive review of traditional and state-of-the-art clustering techniques for different domains. This survey considers clustering from a more practical perspective. It shows the outstanding role of clustering in various disciplines, such as education, marketing, medicine, biology, and bioinformatics. It also discusses the application of clustering to different fields attracting intensive efforts among the scientific community, such as big data, artificial intelligence, and robotics. This survey paper will be beneficial for both practitioners and researchers. It will serve as a good reference point for researchers and practitioners to design improved and efficient state-of-the-art clustering algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
8秒前
寻道图强应助科研通管家采纳,获得30
8秒前
清爽夜雪发布了新的文献求助10
9秒前
1分钟前
善学以致用应助别再困了采纳,获得10
1分钟前
专注的帆布鞋完成签到 ,获得积分10
1分钟前
隐形问萍发布了新的文献求助10
1分钟前
一叶知秋完成签到 ,获得积分10
1分钟前
白佐帅发布了新的文献求助10
1分钟前
耍酷芷珍完成签到,获得积分20
1分钟前
1分钟前
1分钟前
正直的孤晴完成签到,获得积分10
1分钟前
Kry4taloL发布了新的文献求助30
1分钟前
白佐帅完成签到,获得积分20
1分钟前
1分钟前
juziyaya应助白佐帅采纳,获得10
2分钟前
完美世界应助科研通管家采纳,获得10
2分钟前
2分钟前
ddfighting发布了新的文献求助10
2分钟前
科研小刘发布了新的文献求助10
2分钟前
璟焱完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
YYYY完成签到 ,获得积分10
2分钟前
叮咚雨发布了新的文献求助10
2分钟前
sora98完成签到 ,获得积分10
2分钟前
豆包完成签到 ,获得积分10
3分钟前
Kry4taloL发布了新的文献求助10
3分钟前
HOW完成签到 ,获得积分10
3分钟前
Hello完成签到,获得积分10
3分钟前
JamesPei应助科研通管家采纳,获得20
4分钟前
caca完成签到,获得积分10
4分钟前
斯文败类应助弯碧琼采纳,获得10
4分钟前
orixero应助bixiao采纳,获得30
4分钟前
5分钟前
山止川行完成签到 ,获得积分10
5分钟前
yier发布了新的文献求助10
5分钟前
yier完成签到,获得积分20
5分钟前
灵感大王喵完成签到 ,获得积分10
5分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142675
求助须知:如何正确求助?哪些是违规求助? 2793563
关于积分的说明 7806917
捐赠科研通 2449815
什么是DOI,文献DOI怎么找? 1303501
科研通“疑难数据库(出版商)”最低求助积分说明 626959
版权声明 601314