Improved double TQWT sparse representation using the MQGA algorithm and new norm for aviation bearing compound fault detection

计算机科学 稀疏逼近 算法 小波 基函数 人工智能 数学 数学分析
作者
Shuo Zhang,Zhiwen Liu,Sihai He,Wei Wang,Lufeng Chen
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:110: 104741-104741 被引量:22
标识
DOI:10.1016/j.engappai.2022.104741
摘要

The double tunable wavelet transform sparse representation realizes signal decomposition by constructing a basis function dictionary that match various characteristic waveforms of compound fault signal. However, the quality factor describing the resonance characteristic of the wavelet basis function can only be determined from practical experience, which is often subjective, and can significantly affect the matching degree between the wavelet basis function and the fault signal. To solve this problem, a new sparse representation method and a new norm are proposed. First, the multi-population quantum genetic algorithm (MQGA) is used to optimize the selected quality factor parameter combinations. The cross-correlated kurtosis of the periodic impact signal is established as the new norm and used to evaluate the optimized parameters. Then, according to the principle of energy entropy dominance, main sub-bands of the low resonance component are reconstructed to reduce noise interference and enhance the impact characteristics of the signal. Finally, Hilbert envelope demodulation analysis is performed on the reconstructed signal to obtain the instantaneous fault characteristic frequency. The proposed method was applied to diagnose compound faults of aviation bearings. The results show that the proposed method can effectively separate and extract the compound fault signal of a bearing in an aero-engine testbed. Furthermore, the compound fault of a damaged bearing in a helicopter transmission system was successfully decoupled, which verified the effectiveness and practicability of the proposed method. • An improved double TQWT sparse representation method using the MQGA and new norm. • MQGA is used to optimize the Q of the improved TQWT to promote the matching degree. • The method transforms compound fault problems into multi-feature extraction problems. • Results show high accuracy in diagnosing compound faults of aviation bearings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
moyu123发布了新的文献求助10
1秒前
Ava应助小元采纳,获得10
1秒前
青凤完成签到 ,获得积分10
1秒前
2秒前
2秒前
2秒前
欢喜完成签到,获得积分20
2秒前
研友_VZG7GZ应助long采纳,获得10
4秒前
4秒前
pinkchips发布了新的文献求助50
4秒前
正在下雨完成签到,获得积分10
4秒前
hjygzv发布了新的文献求助10
4秒前
layzlr发布了新的文献求助10
6秒前
lzh发布了新的文献求助10
6秒前
6秒前
snowy完成签到,获得积分10
7秒前
Robin发布了新的文献求助10
7秒前
qianye发布了新的文献求助30
7秒前
7秒前
7秒前
Rita小白发布了新的文献求助10
7秒前
xyy完成签到,获得积分10
8秒前
小川完成签到,获得积分10
8秒前
8秒前
航航发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
研友_VZG7GZ应助勤奋的白桃采纳,获得10
10秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
qianye完成签到,获得积分10
13秒前
风卷残云发布了新的文献求助30
13秒前
14秒前
cc发布了新的文献求助10
14秒前
15秒前
ekun完成签到,获得积分10
15秒前
16秒前
bkagyin应助天雨流芳采纳,获得10
16秒前
大模型应助天雨流芳采纳,获得10
16秒前
阿六完成签到,获得积分20
17秒前
愉快的苑博完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771006
求助须知:如何正确求助?哪些是违规求助? 5588895
关于积分的说明 15426243
捐赠科研通 4904384
什么是DOI,文献DOI怎么找? 2638696
邀请新用户注册赠送积分活动 1586530
关于科研通互助平台的介绍 1541682