清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Molecular Recognition

分子识别 超分子化学 纳米技术 化学 分子间力 分子 认知科学 材料科学 心理学 有机化学
作者
Tiddo J. Mooibroek,Steve Scheiner,Hennie Valkenier
出处
期刊:ChemPhysChem [Wiley]
卷期号:22 (5): 433-434 被引量:5
标识
DOI:10.1002/cphc.202100056
摘要

ChemPhysChemVolume 22, Issue 5 p. 433-434 EditorialFree Access Molecular Recognition Dr. Tiddo Jonathan Mooibroek, Corresponding Author t.j.mooibroek@uva.nl orcid.org/0000-0002-9086-1343 University of Amsterdam, Science Park A, 904 Amsterdam, NetherlandsSearch for more papers by this authorProf. Steve Scheiner, Corresponding Author steve.scheiner@usu.edu orcid.org/0000-0003-0793-0369 Utah State University, 0300 Old Main Hill, Logan, 84322-0300 United StatesSearch for more papers by this authorDr. Hennie Valkenier, Corresponding Author Hennie.Valkenier@ulb.be orcid.org/0000-0002-4409-0154 Université libre de Bruxelles, 50 avenue F. Roosevelt, Brussels, 1050 BelgiumSearch for more papers by this author Dr. Tiddo Jonathan Mooibroek, Corresponding Author t.j.mooibroek@uva.nl orcid.org/0000-0002-9086-1343 University of Amsterdam, Science Park A, 904 Amsterdam, NetherlandsSearch for more papers by this authorProf. Steve Scheiner, Corresponding Author steve.scheiner@usu.edu orcid.org/0000-0003-0793-0369 Utah State University, 0300 Old Main Hill, Logan, 84322-0300 United StatesSearch for more papers by this authorDr. Hennie Valkenier, Corresponding Author Hennie.Valkenier@ulb.be orcid.org/0000-0002-4409-0154 Université libre de Bruxelles, 50 avenue F. Roosevelt, Brussels, 1050 BelgiumSearch for more papers by this author First published: 12 February 2021 https://doi.org/10.1002/cphc.202100056AboutSectionsPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinked InRedditWechat Abstract After the existence of molecules was established at the turn of the 20th century, chemists focussed on studying how molecules react. That molecules can also be programmed to interact was brought into focus by the 1987 Cram-Lehn-Pedersen Nobel Prize ‘for their development and use of molecules with structure-specific interactions of high selectivity’.1 Their initial insights can be seen to have birthed the field of supramolecular chemistry, or ‘the chemistry of the intermolecular bond’,2 which has evolved into a mature field.3 One implication of intermolecular bonding is the phenomenon of molecular recognition,4 which must be at least as old as life on earth; this is evident from the various bio-machineries that have been unravelled in the past half-decade or so.5 A contemporary example is the SARS-CoV-2 virus, which infects cells by recognising a membrane enzyme (ACE2) with its spike proteins.6 Besides the relevance of molecular recognition to understand biology on a molecular level, typical areas of application include: chemical biology, sensing, purification/separation, crystal engineering, nanotechnology, (small molecule) drug development and site-selective (supramolecular) catalysis. Given these diverse fields of applications, it is no surprise that the number of articles mentioning ‘molecular recognition’ in the title or topic section has been climbing over the past fifty years to nearly 13 000 in the last decade (see Figure 1). We see no reason why this trend would break, especially as advanced techniques to study molecular recognition phenomena are increasingly routine. One might think about two-dimensional NMR techniques using strong-field spectrometers, various optical techniques and computational tools such as large cluster super computers or even increasingly powerful multi-core desktop PCs. Figure 1Open in figure viewerPowerPoint Web of Science search for the number of articles published per decade containing ‘molecular recognition’ in the title or topic section. The maturity of the field and its techniques notwithstanding, there are ample opportunities to expand the research area, of which we highlight four. One avenue is the computational evaluation of lesser-known intermolecular (σ- and π-hole) interactions and attempt to translate this into molecular recognition properties. There is a clear precedence for such developments in the literature of Halogen7 and Chalcogen8 bonding interactions.9 Another opportunity is presented by the development of stimulus (e. g. hν) driven recognition and/or release of specific molecules. This concept could, for example, be exploited to selectively release a drug or to switch between activated/deactivated transport molecules. A third prospect is the development of molecules that can selectively recognise carbohydrates, which are the largest and most diverse class of biomolecules. The subtle differences between regioisomers, stereoisomers and enantiomers make this a daunting task, but recent developments suggest that it is a tenable goal. Finally, a common challenge is the bio-orthogonality of synthetic molecules designed for their molecular recognition properties. Achieving water solubility is not as straightforward as one might hope, and molecular recognition is often highly solvent dependent. Moreover, not all tricks to solubilise organic molecules results in toxicologically benign compounds. We are eager to see how our collective efforts will capitalise on the diverse molecular recognition challenges such as those highlighted above. Hopefully, some of the breakthroughs will be realised by authors of this special issue on molecular recognition. The eleven computational inquiries and five experimental studies present a step in the right direction and we are grateful to all authors for accepting our invitation and trusting us with their work. References 1https://www.nobelprize.org/prizes/chemistry/1987/summary/. Google Scholar 2J. M. Lehn, Angew. Chem. Int. Ed. Engl. 1990, 29, 1304– 1319. Wiley Online LibraryWeb of Science®Google Scholar 3Various excellent textbooks are currently available, such as: Google Scholar 3aJ. W. Steed and J. L. Atwood: ‘Supramolecular Chemistry’ 2nd edn., 2009 (Wiley); Google Scholar 3bP. J. Cragg: ‘Supramolecular Chemistry: from biological inspiration to biomedical applications’, 2010 (Springer); Google Scholar 3cP. A. Gale and J. W. Atwood: ‘Supramolecular chemistry; from molecules to nanomaterials’, 2012 (Wiley); Google Scholar 3dC. Schalley: ‘Analytical Methods in Supramolecular Chemistry’ 2002nd edn., 2012 (Wiley); Google Scholar 3eS. Kubik: ‘Supramolecular Chemistry in water’, 2019 (Wiley). Google Scholar 4For textbooks, see: Google Scholar 4aJ. L. Atwood: ‘Inclusion phenomena and molecular recognition’, 2011 (Springer); Google Scholar 4bA. D. Buckingham, A. C. Legon and S. M. Roberts: ‘Principles of molecular recognition’, 2012 (Springer). Google Scholar 5At least one third of all Nobel prizes in Chemistry have been awarded for the discovery of biomolecules (e. g. hormones), their (chemical and biochemical) manipulation and the developments of techniques that make it possible to study them in detail (e. g. X-ray crystallography, nuclear magnetic resonance spectroscopy and (cryo-) electron microscopy). See https://www.nobelprize.org/prizes/lists/all-nobel-prizes-in-chemistry/. Google Scholar 6Q. H. Wang, Y. F. Zhang, L. L. Wu, S. Niu, C. L. Song, Z. Y. Zhang, G. W. Lu, C. P. Qiao, Y. Hu, K. Y. Yuen, Q. S. Wang, H. Zhou, J. H. Yan, J. X. Qi, Cell 2020, 181, 894– 904. CrossrefCASPubMedWeb of Science®Google Scholar 7 7aP. Auffinger, F. A. Hays, E. Westhof, P. S. Ho, Proc. Natl. Acad. Sci. USA 2004, 101, 16789– 16794; CrossrefCASPubMedWeb of Science®Google Scholar 7bP. Metrangolo, H. Neukirch, T. Pilati, G. Resnati, Acc. Chem. Res. 2005, 38, 386– 395; CrossrefCASPubMedWeb of Science®Google Scholar 7cP. Politzer, P. Lane, M. C. Concha, Y. G. Ma, J. S. Murray, J. Mol. Model. 2007, 13, 305– 311; CrossrefCASPubMedWeb of Science®Google Scholar 7dP. Metrangolo, F. Meyer, T. Pilati, G. Resnati, G. Terraneo, Angew. Chem. Int. Ed. 2008, 47, 6114– 6127; Wiley Online LibraryCASPubMedWeb of Science®Google ScholarAngew. Chem. 2008, 120, 6206– 6220. Wiley Online LibraryGoogle Scholar 8 8aS. Benz, M. Macchione, Q. Verolet, J. Mareda, N. Sakai, S. Matile, J. Am. Chem. Soc. 2016, 138, 9093– 9096; CrossrefCASPubMedWeb of Science®Google Scholar 8bD. J. Pascoe, K. B. Ling, S. L. Cockroft, J. Am. Chem. Soc. 2017, 139, 15160– 15167; CrossrefCASPubMedWeb of Science®Google Scholar 8cL. Vogel, P. Wonner, S. M. Huber, Angew. Chem. Int. Ed. 2019, 58, 1880– 1891. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar 9 9aG. R. Desiraju, P. S. Ho, L. Kloo, A. C. Legon, R. Marquardt, P. Metrangolo, P. Politzer, G. Resnati, K. Rissanen, Pure Appl. Chem. 2013, 85, 1711– 1713; CrossrefCASWeb of Science®Google Scholar 9bC. B. Aakeroy, D. L. Bryce, G. Desiraju, A. Frontera, A. C. Legon, F. Nicotra, K. Rissanen, S. Scheiner, G. Terraneo, P. Metrangolo, G. Resnati, Pure Appl. Chem. 2019, 91, 1889– 1892. CrossrefCASWeb of Science®Google Scholar Volume22, Issue5March 3, 2021Pages 433-434 This article also appears in:Molecular Recognition FiguresReferencesRelatedInformation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小青年儿完成签到 ,获得积分10
10秒前
28秒前
wushuimei完成签到 ,获得积分10
45秒前
46秒前
个性仙人掌完成签到 ,获得积分10
1分钟前
摸鱼人完成签到 ,获得积分10
1分钟前
Zz完成签到 ,获得积分10
1分钟前
丘比特应助a_spoon采纳,获得20
1分钟前
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
机智若云完成签到,获得积分10
1分钟前
dreamwalk完成签到 ,获得积分10
1分钟前
皮皮球完成签到 ,获得积分10
2分钟前
自由飞翔完成签到 ,获得积分10
2分钟前
bookgg完成签到 ,获得积分10
2分钟前
ceeray23给CYQ的求助进行了留言
2分钟前
北笙完成签到 ,获得积分10
2分钟前
2分钟前
个性的荆完成签到,获得积分20
2分钟前
2分钟前
顾矜应助个性的荆采纳,获得10
2分钟前
王波完成签到 ,获得积分10
3分钟前
依依完成签到 ,获得积分10
3分钟前
淡淡醉波wuliao完成签到 ,获得积分10
3分钟前
健壮的怜烟完成签到,获得积分10
3分钟前
nc5lou完成签到 ,获得积分10
3分钟前
Yolo完成签到 ,获得积分10
3分钟前
3分钟前
xianyaoz完成签到 ,获得积分10
3分钟前
wanci应助苗条的傲丝采纳,获得10
3分钟前
tjpuzhang完成签到 ,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
Singularity应助科研通管家采纳,获得10
3分钟前
脑洞疼应助科研通管家采纳,获得10
3分钟前
三个气的大门完成签到 ,获得积分10
3分钟前
3分钟前
Raul完成签到 ,获得积分10
3分钟前
tony完成签到,获得积分10
3分钟前
wz完成签到,获得积分10
3分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
体心立方金属铌、钽及其硼化物中滑移与孪生机制的研究 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3450467
求助须知:如何正确求助?哪些是违规求助? 3045952
关于积分的说明 9003778
捐赠科研通 2734611
什么是DOI,文献DOI怎么找? 1500096
科研通“疑难数据库(出版商)”最低求助积分说明 693341
邀请新用户注册赠送积分活动 691477