清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A graph convolution network‐deep reinforcement learning model for resilient water distribution network repair decisions

强化学习 试验台 弹性(材料科学) 计算机科学 图形 过程(计算) 可靠性工程 服务(商务) 人工智能 工程类 计算机网络 理论计算机科学 物理 操作系统 经济 经济 热力学
作者
Xudong Fan,Xijin Zhang,Xiong Yu
出处
期刊:Computer-aided Civil and Infrastructure Engineering [Wiley]
卷期号:37 (12): 1547-1565 被引量:21
标识
DOI:10.1111/mice.12813
摘要

Abstract Water distribution networks (WDNs) are critical infrastructure for communities. The dramatic expansion of the WDNs associated with urbanization makes them more vulnerable to high‐consequence hazards such as earthquakes, which requires strategies to ensure their resilience. The resilience of a WDN is related to its ability to recover its service after disastrous events. Sound decisions on the repair sequence play a crucial role to ensure a resilient WDN recovery. This paper introduces the development of a graph convolutional neural network‐integrated deep reinforcement learning (GCN‐DRL) model to support optimal repair decisions to improve WDN resilience after earthquakes. A WDN resilience evaluation framework is first developed, which integrates the dynamic evolution of WDN performance indicators during the post‐earthquake recovery process. The WDN performance indicator considers the relative importance of the service nodes and the extent of post‐earthquake water needs that are satisfied. In this GCN‐DRL model framework, the GCN encodes the information of the WDN. The topology and performance of service nodes (i.e., the degree of water that needs satisfaction) are inputs to the GCN; the outputs of GCN are the reward values (Q‐values) corresponding to each repair action, which are fed into the DRL process to select the optimal repair sequence from a large action space to achieve highest system resilience. The GCN‐DRL model is demonstrated on a testbed WDN subjected to three earthquake damage scenarios. The performance of the repair decisions by the GCN‐DRL model is compared with those by four conventional decision methods. The results show that the recovery sequence by the GCN‐DRL model achieved the highest system resilience index values and the fastest recovery of system performance. Besides, by using transfer learning based on a pre‐trained model, the GCN‐DRL model achieved high computational efficiency in determining the optimal repair sequences under new damage scenarios. This novel GCN‐DRL model features robustness and universality to support optimal repair decisions to ensure resilient WDN recovery from earthquake damages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
afli完成签到 ,获得积分0
刚刚
科研临床两手抓完成签到 ,获得积分10
2秒前
佳期如梦完成签到 ,获得积分10
7秒前
糊涂的青烟完成签到 ,获得积分10
11秒前
lalala完成签到 ,获得积分10
21秒前
luckygirl完成签到 ,获得积分10
22秒前
田様应助优秀的尔风采纳,获得10
22秒前
宏伟应助科研通管家采纳,获得10
23秒前
爱静静应助科研通管家采纳,获得30
23秒前
CodeCraft应助科研通管家采纳,获得10
23秒前
elsa622完成签到 ,获得积分10
34秒前
xkhxh完成签到 ,获得积分10
37秒前
行走的绅士完成签到,获得积分10
38秒前
42秒前
44秒前
46秒前
48秒前
毛毛弟完成签到 ,获得积分10
48秒前
庄怀逸完成签到 ,获得积分10
51秒前
满意的柏柳完成签到 ,获得积分10
51秒前
qq完成签到 ,获得积分10
58秒前
victory_liu完成签到,获得积分10
1分钟前
无奈破茧完成签到,获得积分10
1分钟前
赘婿应助cxl采纳,获得10
1分钟前
朱婷完成签到 ,获得积分10
1分钟前
航行天下完成签到 ,获得积分10
1分钟前
guoxihan完成签到,获得积分10
1分钟前
小蘑菇应助无奈破茧采纳,获得30
1分钟前
sleet完成签到 ,获得积分10
1分钟前
双眼皮跳蚤完成签到,获得积分10
1分钟前
li完成签到 ,获得积分10
1分钟前
Amon完成签到 ,获得积分10
1分钟前
研友_nV2ROn完成签到,获得积分10
1分钟前
人言可畏完成签到 ,获得积分10
2分钟前
1250241652完成签到,获得积分10
2分钟前
大模型应助烟消云散采纳,获得10
2分钟前
2分钟前
玩命的无春完成签到 ,获得积分10
2分钟前
淡淡醉波wuliao完成签到 ,获得积分10
2分钟前
jfw完成签到 ,获得积分10
2分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792550
求助须知:如何正确求助?哪些是违规求助? 3336769
关于积分的说明 10282111
捐赠科研通 3053544
什么是DOI,文献DOI怎么找? 1675652
邀请新用户注册赠送积分活动 803629
科研通“疑难数据库(出版商)”最低求助积分说明 761468