A graph convolution network‐deep reinforcement learning model for resilient water distribution network repair decisions

强化学习 试验台 弹性(材料科学) 计算机科学 图形 过程(计算) 可靠性工程 服务(商务) 人工智能 工程类 计算机网络 理论计算机科学 物理 操作系统 经济 经济 热力学
作者
Xudong Fan,Xijin Zhang,Xiong Yu
出处
期刊:Computer-aided Civil and Infrastructure Engineering [Wiley]
卷期号:37 (12): 1547-1565 被引量:21
标识
DOI:10.1111/mice.12813
摘要

Abstract Water distribution networks (WDNs) are critical infrastructure for communities. The dramatic expansion of the WDNs associated with urbanization makes them more vulnerable to high‐consequence hazards such as earthquakes, which requires strategies to ensure their resilience. The resilience of a WDN is related to its ability to recover its service after disastrous events. Sound decisions on the repair sequence play a crucial role to ensure a resilient WDN recovery. This paper introduces the development of a graph convolutional neural network‐integrated deep reinforcement learning (GCN‐DRL) model to support optimal repair decisions to improve WDN resilience after earthquakes. A WDN resilience evaluation framework is first developed, which integrates the dynamic evolution of WDN performance indicators during the post‐earthquake recovery process. The WDN performance indicator considers the relative importance of the service nodes and the extent of post‐earthquake water needs that are satisfied. In this GCN‐DRL model framework, the GCN encodes the information of the WDN. The topology and performance of service nodes (i.e., the degree of water that needs satisfaction) are inputs to the GCN; the outputs of GCN are the reward values (Q‐values) corresponding to each repair action, which are fed into the DRL process to select the optimal repair sequence from a large action space to achieve highest system resilience. The GCN‐DRL model is demonstrated on a testbed WDN subjected to three earthquake damage scenarios. The performance of the repair decisions by the GCN‐DRL model is compared with those by four conventional decision methods. The results show that the recovery sequence by the GCN‐DRL model achieved the highest system resilience index values and the fastest recovery of system performance. Besides, by using transfer learning based on a pre‐trained model, the GCN‐DRL model achieved high computational efficiency in determining the optimal repair sequences under new damage scenarios. This novel GCN‐DRL model features robustness and universality to support optimal repair decisions to ensure resilient WDN recovery from earthquake damages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助薄荷巧克力采纳,获得10
刚刚
李健应助xxxllllll采纳,获得10
2秒前
上官若男应助TTT0530采纳,获得10
2秒前
obaica发布了新的文献求助10
3秒前
追寻访卉发布了新的文献求助10
4秒前
平常的寻真完成签到,获得积分20
4秒前
張医铄完成签到,获得积分10
4秒前
4秒前
霸气以菱完成签到 ,获得积分10
5秒前
5秒前
snai1发布了新的文献求助20
7秒前
Dandy完成签到,获得积分10
8秒前
Archy发布了新的文献求助10
8秒前
8秒前
简单完成签到,获得积分10
8秒前
9秒前
10秒前
10秒前
Theprisoners举报1212求助涉嫌违规
10秒前
WN完成签到,获得积分10
11秒前
笑点低的不愁完成签到,获得积分10
11秒前
11秒前
11秒前
SYLH应助科研通管家采纳,获得10
11秒前
华仔应助科研通管家采纳,获得10
11秒前
小马甲应助科研通管家采纳,获得10
11秒前
大模型应助科研通管家采纳,获得30
11秒前
天天快乐应助科研通管家采纳,获得10
12秒前
Lucas应助科研通管家采纳,获得10
12秒前
SHAO应助科研通管家采纳,获得10
12秒前
小豆豆应助科研通管家采纳,获得10
12秒前
12秒前
Orange应助科研通管家采纳,获得10
12秒前
汉堡包应助科研通管家采纳,获得10
12秒前
Profeto应助科研通管家采纳,获得10
12秒前
汉堡包应助科研通管家采纳,获得10
12秒前
华仔应助科研通管家采纳,获得30
13秒前
彭于晏应助科研通管家采纳,获得10
13秒前
SYLH应助科研通管家采纳,获得10
13秒前
SYLH应助科研通管家采纳,获得10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992562
求助须知:如何正确求助?哪些是违规求助? 3533545
关于积分的说明 11262757
捐赠科研通 3273163
什么是DOI,文献DOI怎么找? 1805959
邀请新用户注册赠送积分活动 882889
科研通“疑难数据库(出版商)”最低求助积分说明 809513