A graph convolution network‐deep reinforcement learning model for resilient water distribution network repair decisions

强化学习 试验台 弹性(材料科学) 计算机科学 图形 过程(计算) 可靠性工程 服务(商务) 人工智能 工程类 计算机网络 理论计算机科学 物理 操作系统 经济 经济 热力学
作者
Xudong Fan,Xijin Zhang,Xiong Yu
出处
期刊:Computer-aided Civil and Infrastructure Engineering [Wiley]
卷期号:37 (12): 1547-1565 被引量:21
标识
DOI:10.1111/mice.12813
摘要

Abstract Water distribution networks (WDNs) are critical infrastructure for communities. The dramatic expansion of the WDNs associated with urbanization makes them more vulnerable to high‐consequence hazards such as earthquakes, which requires strategies to ensure their resilience. The resilience of a WDN is related to its ability to recover its service after disastrous events. Sound decisions on the repair sequence play a crucial role to ensure a resilient WDN recovery. This paper introduces the development of a graph convolutional neural network‐integrated deep reinforcement learning (GCN‐DRL) model to support optimal repair decisions to improve WDN resilience after earthquakes. A WDN resilience evaluation framework is first developed, which integrates the dynamic evolution of WDN performance indicators during the post‐earthquake recovery process. The WDN performance indicator considers the relative importance of the service nodes and the extent of post‐earthquake water needs that are satisfied. In this GCN‐DRL model framework, the GCN encodes the information of the WDN. The topology and performance of service nodes (i.e., the degree of water that needs satisfaction) are inputs to the GCN; the outputs of GCN are the reward values (Q‐values) corresponding to each repair action, which are fed into the DRL process to select the optimal repair sequence from a large action space to achieve highest system resilience. The GCN‐DRL model is demonstrated on a testbed WDN subjected to three earthquake damage scenarios. The performance of the repair decisions by the GCN‐DRL model is compared with those by four conventional decision methods. The results show that the recovery sequence by the GCN‐DRL model achieved the highest system resilience index values and the fastest recovery of system performance. Besides, by using transfer learning based on a pre‐trained model, the GCN‐DRL model achieved high computational efficiency in determining the optimal repair sequences under new damage scenarios. This novel GCN‐DRL model features robustness and universality to support optimal repair decisions to ensure resilient WDN recovery from earthquake damages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小靖哥哥发布了新的文献求助30
刚刚
1秒前
wanci应助cc采纳,获得10
1秒前
YH发布了新的文献求助10
1秒前
1秒前
天道酬勤发布了新的文献求助10
3秒前
3秒前
刘恋完成签到,获得积分10
4秒前
fsznc完成签到 ,获得积分0
4秒前
一口啵啵发布了新的文献求助10
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
Tingting发布了新的文献求助10
7秒前
大个应助cc采纳,获得10
8秒前
Mingzhu发布了新的文献求助10
8秒前
李爱国应助欣喜的忆秋采纳,获得10
9秒前
猪猪hero发布了新的文献求助10
9秒前
奥奥没有利饼干完成签到 ,获得积分10
10秒前
愿好完成签到,获得积分10
14秒前
若n完成签到 ,获得积分10
16秒前
小二郎应助123采纳,获得10
16秒前
wxyshare应助一口啵啵采纳,获得10
17秒前
星辰大海应助一口啵啵采纳,获得10
17秒前
搭碰完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助10
19秒前
20秒前
糊涂涂完成签到 ,获得积分10
20秒前
今后应助小半采纳,获得10
20秒前
FashionBoy应助错觉采纳,获得10
21秒前
21秒前
炸骐发布了新的文献求助10
21秒前
怕黑向秋发布了新的文献求助10
21秒前
21秒前
cc完成签到,获得积分20
23秒前
23秒前
23秒前
杜妤涵完成签到,获得积分10
24秒前
挺喜欢你发布了新的文献求助10
24秒前
25秒前
Breeze完成签到 ,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5490042
求助须知:如何正确求助?哪些是违规求助? 4588835
关于积分的说明 14421391
捐赠科研通 4520586
什么是DOI,文献DOI怎么找? 2476785
邀请新用户注册赠送积分活动 1462268
关于科研通互助平台的介绍 1435171