A graph convolution network‐deep reinforcement learning model for resilient water distribution network repair decisions

强化学习 试验台 弹性(材料科学) 计算机科学 图形 过程(计算) 可靠性工程 服务(商务) 人工智能 工程类 计算机网络 理论计算机科学 物理 操作系统 经济 经济 热力学
作者
Xudong Fan,Xijin Zhang,Xiong Yu
出处
期刊:Computer-aided Civil and Infrastructure Engineering [Wiley]
卷期号:37 (12): 1547-1565 被引量:21
标识
DOI:10.1111/mice.12813
摘要

Abstract Water distribution networks (WDNs) are critical infrastructure for communities. The dramatic expansion of the WDNs associated with urbanization makes them more vulnerable to high‐consequence hazards such as earthquakes, which requires strategies to ensure their resilience. The resilience of a WDN is related to its ability to recover its service after disastrous events. Sound decisions on the repair sequence play a crucial role to ensure a resilient WDN recovery. This paper introduces the development of a graph convolutional neural network‐integrated deep reinforcement learning (GCN‐DRL) model to support optimal repair decisions to improve WDN resilience after earthquakes. A WDN resilience evaluation framework is first developed, which integrates the dynamic evolution of WDN performance indicators during the post‐earthquake recovery process. The WDN performance indicator considers the relative importance of the service nodes and the extent of post‐earthquake water needs that are satisfied. In this GCN‐DRL model framework, the GCN encodes the information of the WDN. The topology and performance of service nodes (i.e., the degree of water that needs satisfaction) are inputs to the GCN; the outputs of GCN are the reward values (Q‐values) corresponding to each repair action, which are fed into the DRL process to select the optimal repair sequence from a large action space to achieve highest system resilience. The GCN‐DRL model is demonstrated on a testbed WDN subjected to three earthquake damage scenarios. The performance of the repair decisions by the GCN‐DRL model is compared with those by four conventional decision methods. The results show that the recovery sequence by the GCN‐DRL model achieved the highest system resilience index values and the fastest recovery of system performance. Besides, by using transfer learning based on a pre‐trained model, the GCN‐DRL model achieved high computational efficiency in determining the optimal repair sequences under new damage scenarios. This novel GCN‐DRL model features robustness and universality to support optimal repair decisions to ensure resilient WDN recovery from earthquake damages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
愉快盼曼发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
nemo发布了新的文献求助10
3秒前
学术蝗虫完成签到,获得积分10
3秒前
justin完成签到,获得积分10
4秒前
西瓜啵啵完成签到,获得积分10
6秒前
小周完成签到,获得积分10
6秒前
Louki完成签到 ,获得积分10
6秒前
温暖的颜演完成签到 ,获得积分10
7秒前
yudandan@CJLU发布了新的文献求助10
8秒前
科研小民工应助_呱_采纳,获得50
8秒前
愉快盼曼完成签到,获得积分20
8秒前
研友_VZG7GZ应助小狗同志006采纳,获得10
9秒前
123完成签到,获得积分10
9秒前
13679165979发布了新的文献求助10
10秒前
温暖的钻石完成签到,获得积分10
10秒前
科研通AI5应助赖道之采纳,获得10
10秒前
11秒前
苏卿应助Eric采纳,获得10
11秒前
思源应助hhzz采纳,获得10
12秒前
红红完成签到,获得积分10
15秒前
瑶一瑶发布了新的文献求助10
15秒前
NexusExplorer应助刘鹏宇采纳,获得10
15秒前
roselau完成签到,获得积分10
15秒前
yudandan@CJLU完成签到,获得积分10
16秒前
16秒前
半山完成签到,获得积分10
20秒前
吹泡泡的红豆完成签到 ,获得积分10
21秒前
研友_89eBO8完成签到 ,获得积分10
21秒前
隐形曼青应助ZeJ采纳,获得10
21秒前
21秒前
隐形曼青应助温暖的钻石采纳,获得10
22秒前
Khr1stINK发布了新的文献求助10
23秒前
123cxj发布了新的文献求助10
24秒前
星辰大海应助红红采纳,获得10
24秒前
sweetbearm应助小周采纳,获得10
25秒前
科研通AI5应助赖道之采纳,获得10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808