A graph convolution network‐deep reinforcement learning model for resilient water distribution network repair decisions

强化学习 试验台 弹性(材料科学) 计算机科学 图形 过程(计算) 可靠性工程 服务(商务) 人工智能 工程类 计算机网络 理论计算机科学 物理 经济 经济 热力学 操作系统
作者
Xudong Fan,Xijin Zhang,Xiong Yu
出处
期刊:Computer-aided Civil and Infrastructure Engineering [Wiley]
卷期号:37 (12): 1547-1565 被引量:21
标识
DOI:10.1111/mice.12813
摘要

Abstract Water distribution networks (WDNs) are critical infrastructure for communities. The dramatic expansion of the WDNs associated with urbanization makes them more vulnerable to high‐consequence hazards such as earthquakes, which requires strategies to ensure their resilience. The resilience of a WDN is related to its ability to recover its service after disastrous events. Sound decisions on the repair sequence play a crucial role to ensure a resilient WDN recovery. This paper introduces the development of a graph convolutional neural network‐integrated deep reinforcement learning (GCN‐DRL) model to support optimal repair decisions to improve WDN resilience after earthquakes. A WDN resilience evaluation framework is first developed, which integrates the dynamic evolution of WDN performance indicators during the post‐earthquake recovery process. The WDN performance indicator considers the relative importance of the service nodes and the extent of post‐earthquake water needs that are satisfied. In this GCN‐DRL model framework, the GCN encodes the information of the WDN. The topology and performance of service nodes (i.e., the degree of water that needs satisfaction) are inputs to the GCN; the outputs of GCN are the reward values (Q‐values) corresponding to each repair action, which are fed into the DRL process to select the optimal repair sequence from a large action space to achieve highest system resilience. The GCN‐DRL model is demonstrated on a testbed WDN subjected to three earthquake damage scenarios. The performance of the repair decisions by the GCN‐DRL model is compared with those by four conventional decision methods. The results show that the recovery sequence by the GCN‐DRL model achieved the highest system resilience index values and the fastest recovery of system performance. Besides, by using transfer learning based on a pre‐trained model, the GCN‐DRL model achieved high computational efficiency in determining the optimal repair sequences under new damage scenarios. This novel GCN‐DRL model features robustness and universality to support optimal repair decisions to ensure resilient WDN recovery from earthquake damages.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
51区发布了新的文献求助10
1秒前
1秒前
一个球一个蛋儿完成签到,获得积分10
1秒前
3秒前
搞怪的千秋完成签到,获得积分10
3秒前
miaomiao完成签到,获得积分10
4秒前
彭于晏应助754采纳,获得10
5秒前
Yangon发布了新的文献求助10
10秒前
小呆子发布了新的文献求助10
10秒前
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
shell完成签到,获得积分10
11秒前
金汐完成签到,获得积分10
12秒前
布里田完成签到 ,获得积分10
12秒前
yh完成签到,获得积分10
13秒前
yy关闭了yy文献求助
14秒前
科研通AI6.1应助娜娜采纳,获得10
14秒前
无花果应助乐邦采纳,获得10
14秒前
14秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
Sicily发布了新的文献求助10
16秒前
清修完成签到,获得积分10
16秒前
李健应助Yangon采纳,获得10
17秒前
拉哈80应助痴情的香魔采纳,获得20
18秒前
18秒前
Muncy完成签到 ,获得积分10
20秒前
22秒前
星辰大海应助小呆子采纳,获得10
22秒前
心灵美鑫完成签到 ,获得积分10
22秒前
23秒前
lyk2815完成签到,获得积分10
23秒前
一万朵蝴蝶完成签到,获得积分10
26秒前
汉堡包应助Sicily采纳,获得10
26秒前
27秒前
51区完成签到,获得积分10
27秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742315
求助须知:如何正确求助?哪些是违规求助? 5407721
关于积分的说明 15344704
捐赠科研通 4883721
什么是DOI,文献DOI怎么找? 2625220
邀请新用户注册赠送积分活动 1574084
关于科研通互助平台的介绍 1531060