A graph convolution network‐deep reinforcement learning model for resilient water distribution network repair decisions

强化学习 试验台 弹性(材料科学) 计算机科学 图形 过程(计算) 可靠性工程 服务(商务) 人工智能 工程类 计算机网络 理论计算机科学 物理 操作系统 经济 经济 热力学
作者
Xudong Fan,Xijin Zhang,Xiong Yu
出处
期刊:Computer-aided Civil and Infrastructure Engineering [Wiley]
卷期号:37 (12): 1547-1565 被引量:21
标识
DOI:10.1111/mice.12813
摘要

Abstract Water distribution networks (WDNs) are critical infrastructure for communities. The dramatic expansion of the WDNs associated with urbanization makes them more vulnerable to high‐consequence hazards such as earthquakes, which requires strategies to ensure their resilience. The resilience of a WDN is related to its ability to recover its service after disastrous events. Sound decisions on the repair sequence play a crucial role to ensure a resilient WDN recovery. This paper introduces the development of a graph convolutional neural network‐integrated deep reinforcement learning (GCN‐DRL) model to support optimal repair decisions to improve WDN resilience after earthquakes. A WDN resilience evaluation framework is first developed, which integrates the dynamic evolution of WDN performance indicators during the post‐earthquake recovery process. The WDN performance indicator considers the relative importance of the service nodes and the extent of post‐earthquake water needs that are satisfied. In this GCN‐DRL model framework, the GCN encodes the information of the WDN. The topology and performance of service nodes (i.e., the degree of water that needs satisfaction) are inputs to the GCN; the outputs of GCN are the reward values (Q‐values) corresponding to each repair action, which are fed into the DRL process to select the optimal repair sequence from a large action space to achieve highest system resilience. The GCN‐DRL model is demonstrated on a testbed WDN subjected to three earthquake damage scenarios. The performance of the repair decisions by the GCN‐DRL model is compared with those by four conventional decision methods. The results show that the recovery sequence by the GCN‐DRL model achieved the highest system resilience index values and the fastest recovery of system performance. Besides, by using transfer learning based on a pre‐trained model, the GCN‐DRL model achieved high computational efficiency in determining the optimal repair sequences under new damage scenarios. This novel GCN‐DRL model features robustness and universality to support optimal repair decisions to ensure resilient WDN recovery from earthquake damages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
长江完成签到 ,获得积分10
1秒前
NexusExplorer应助kuroyi采纳,获得10
1秒前
dddddd发布了新的文献求助10
2秒前
2秒前
4秒前
aiming发布了新的文献求助10
4秒前
4秒前
4秒前
Nights关注了科研通微信公众号
4秒前
5秒前
吴彦祖发布了新的文献求助10
5秒前
6秒前
媛宝&硕宝发布了新的文献求助30
6秒前
8秒前
家迎松发布了新的文献求助30
8秒前
asafasfsaff完成签到 ,获得积分10
9秒前
一二发布了新的文献求助10
10秒前
10秒前
tinysweet发布了新的文献求助10
10秒前
10秒前
鲜奶麻薯呼呼完成签到,获得积分10
11秒前
小二郎应助wltwb采纳,获得10
12秒前
秋临发布了新的文献求助10
12秒前
小于发布了新的文献求助10
12秒前
小龙女完成签到,获得积分20
13秒前
13秒前
lvsehx发布了新的文献求助10
14秒前
动听的泥猴桃完成签到,获得积分10
14秒前
英俊的铭应助wzx199711采纳,获得10
14秒前
chinh发布了新的文献求助30
15秒前
18秒前
18秒前
在水一方应助小于采纳,获得10
18秒前
Ava应助小鸟芋圆露露采纳,获得10
19秒前
zydxyx发布了新的文献求助10
20秒前
老实冰海发布了新的文献求助10
21秒前
21秒前
拼搏向上发布了新的文献求助10
22秒前
罗罗罗发布了新的文献求助10
22秒前
23秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
錢鍾書楊絳親友書札 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3298219
求助须知:如何正确求助?哪些是违规求助? 2933175
关于积分的说明 8462618
捐赠科研通 2606193
什么是DOI,文献DOI怎么找? 1422881
科研通“疑难数据库(出版商)”最低求助积分说明 661541
邀请新用户注册赠送积分活动 644927