微观混合
毫米
机械
频道(广播)
混合(物理)
化学
核工程
材料科学
分析化学(期刊)
色谱法
物理
工程类
光学
电气工程
量子力学
作者
Shun Bai,Wensi Li,Wei Liu,Yong Luo,Guang‐Wen Chu,Jian‐Feng Chen
标识
DOI:10.1016/j.ces.2021.117407
摘要
• A novel rotating millimeter channel reactor (RMCR) was proposed. • The micromixing efficiency of the RMCR were investigated. • The intensification mechanism analysis was illustrated. • A new strategy to enhance the micromixing performance via high gravity was developed. A millimeter channel reactor which can achieve rapid mixing has been applied in many chemical processes. To intensify the micromixing performance, previous studies focused on the structure development and the optimization of operating conditions. However, using high gravity field for micromixing performance enhancement in the millimeter channel reactor has scarcely been assessed. In this work, a novel rotating millimeter channel reactor (RMCR) was proposed, which used centrifugal and Coriolis forces to further intensify the micromixing performance. The segregation index ( X s ) and micromixing time ( t m ) of the RMCR were experimentally studied to evaluate the micromixing efficiency. Results showed that the micromixing efficiency of the RMCR was better up to 35% than that of the conventional millimeter channel reactor without rotation by the comparsions of X s . According to the incorporation model based on the experimental data, the value of t m in the RMCR was calculated to be 10 −6 –10 −4 s. Furthermore, the intensification mechanism analysis illustrated that the high gravity field effectively enhanced the contact with high velocity to intensify the premixing performance. This work provides a new strategy to improve the micromixing performance in the millimeter channel reactor via high gravity field.
科研通智能强力驱动
Strongly Powered by AbleSci AI