Non-invasive preoperative imaging differential diagnosis of pineal region tumor: A novel developed and validated multiparametric MRI-based clinicoradiomic model

医学 鉴别诊断 生殖细胞瘤 放射科 逻辑回归 人工智能 计算机科学 放射治疗 病理 内科学
作者
Yanghua Fan,Xulei Huo,Xiaojie Li,Liang Wang,Zhen Wu
出处
期刊:Radiotherapy and Oncology [Elsevier BV]
卷期号:167: 277-284 被引量:10
标识
DOI:10.1016/j.radonc.2022.01.005
摘要

Preoperative differential diagnosis of pineal region tumor can greatly assist clinical decision-making and avoid economic costs and complications caused by unnecessary radiotherapy or invasive procedures. The present study was performed to pre-operatively distinguish pineal region germinoma and pinealoblastoma using a clinicoradiomic model by incorporating radiomic and clinical features.134 pineal region tumor patients (germinoma, 69; pinealoblastoma, 65) with complete clinic-radiological and histopathological data from Tiantan hospital were retrospectively reviewed and randomly assigned to training and validation sets. Radiomic features were extracted from MR images, then the elastic net and recursive feature elimination algorithms were applied to select radiomic features for constructing a fusion radiomic model. Subsequently, multivariable logistic regression analysis was used to select the clinical features, and a clinicoradiomic model incorporating the fusion radiomic model and selected clinical features was constructed for individual predictions. The calibration, discriminating capacity, and clinical usefulness were also evaluated.Seven significant radiomic features were selected to construct a fusion radiomic model that achieved an area under the curve (AUC) value of 0.920 and 0.880 in the training and validation sets, respectively. A clinicoradiomic model that incorporated the radiomic model and four selected clinical features was constructed and showed good discrimination and calibration, with an AUC of 0.950 in the training set and 0.940 in the validation set. The analysis of the decision curve showed that the radiomic model and clinicoradiomic model were clinically useful for patients with pineal region tumor.Our clinicoradiomic model showed great performance and high sensitivity in the differential diagnosis of germinoma and pinealoblastoma, and could contribute to non-invasive development of individualized diagnosis and treatment of patients with pineal region tumor.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿凉完成签到,获得积分10
刚刚
勤奋凡之完成签到 ,获得积分10
1秒前
科研通AI2S应助寒冷的咖啡采纳,获得10
1秒前
斯文败类应助xiao采纳,获得10
1秒前
3秒前
明道若昧完成签到 ,获得积分10
3秒前
聚砂成塔完成签到,获得积分10
3秒前
yiyi131完成签到,获得积分10
3秒前
zjrh完成签到,获得积分10
4秒前
桐桐应助YaoHui采纳,获得10
4秒前
4秒前
Present完成签到,获得积分10
4秒前
情怀应助直率的不惜采纳,获得10
5秒前
wanci应助萤火虫采纳,获得10
6秒前
6秒前
呆萌冰绿完成签到,获得积分10
6秒前
旭旭完成签到 ,获得积分10
7秒前
RandyChen完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
柒月完成签到,获得积分20
7秒前
xiaostou完成签到,获得积分10
8秒前
小h完成签到,获得积分10
8秒前
打打应助金虎采纳,获得10
8秒前
云遮月完成签到,获得积分10
9秒前
博修发布了新的文献求助10
9秒前
9秒前
我去打球发布了新的文献求助10
10秒前
brd完成签到,获得积分10
10秒前
小田完成签到 ,获得积分10
10秒前
英姑应助dd采纳,获得10
11秒前
Lc完成签到,获得积分10
11秒前
12秒前
12秒前
典雅的访风完成签到,获得积分10
12秒前
long发布了新的文献求助10
12秒前
Linp应助黑色幽默采纳,获得10
13秒前
小刺猬完成签到,获得积分10
13秒前
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016369
求助须知:如何正确求助?哪些是违规求助? 3556535
关于积分的说明 11321511
捐赠科研通 3289320
什么是DOI,文献DOI怎么找? 1812429
邀请新用户注册赠送积分活动 887952
科研通“疑难数据库(出版商)”最低求助积分说明 812060