Non-invasive preoperative imaging differential diagnosis of pineal region tumor: A novel developed and validated multiparametric MRI-based clinicoradiomic model

医学 鉴别诊断 生殖细胞瘤 放射科 逻辑回归 人工智能 计算机科学 放射治疗 病理 内科学
作者
Yanghua Fan,Xulei Huo,Xiaojie Li,Liang Wang,Zhen Wu
出处
期刊:Radiotherapy and Oncology [Elsevier]
卷期号:167: 277-284 被引量:10
标识
DOI:10.1016/j.radonc.2022.01.005
摘要

Preoperative differential diagnosis of pineal region tumor can greatly assist clinical decision-making and avoid economic costs and complications caused by unnecessary radiotherapy or invasive procedures. The present study was performed to pre-operatively distinguish pineal region germinoma and pinealoblastoma using a clinicoradiomic model by incorporating radiomic and clinical features.134 pineal region tumor patients (germinoma, 69; pinealoblastoma, 65) with complete clinic-radiological and histopathological data from Tiantan hospital were retrospectively reviewed and randomly assigned to training and validation sets. Radiomic features were extracted from MR images, then the elastic net and recursive feature elimination algorithms were applied to select radiomic features for constructing a fusion radiomic model. Subsequently, multivariable logistic regression analysis was used to select the clinical features, and a clinicoradiomic model incorporating the fusion radiomic model and selected clinical features was constructed for individual predictions. The calibration, discriminating capacity, and clinical usefulness were also evaluated.Seven significant radiomic features were selected to construct a fusion radiomic model that achieved an area under the curve (AUC) value of 0.920 and 0.880 in the training and validation sets, respectively. A clinicoradiomic model that incorporated the radiomic model and four selected clinical features was constructed and showed good discrimination and calibration, with an AUC of 0.950 in the training set and 0.940 in the validation set. The analysis of the decision curve showed that the radiomic model and clinicoradiomic model were clinically useful for patients with pineal region tumor.Our clinicoradiomic model showed great performance and high sensitivity in the differential diagnosis of germinoma and pinealoblastoma, and could contribute to non-invasive development of individualized diagnosis and treatment of patients with pineal region tumor.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助派派采纳,获得10
刚刚
Norajjj发布了新的文献求助10
1秒前
淡定怜阳发布了新的文献求助20
1秒前
momo完成签到,获得积分10
2秒前
可了不得完成签到 ,获得积分10
2秒前
快快快快快快快快快完成签到 ,获得积分10
2秒前
3秒前
WangJ1018完成签到,获得积分10
4秒前
4秒前
hmbb完成签到,获得积分10
4秒前
慕青应助phy采纳,获得10
5秒前
缓慢咖啡发布了新的文献求助10
6秒前
小二郎应助陨落星辰采纳,获得10
6秒前
6秒前
CC完成签到 ,获得积分10
7秒前
8秒前
8秒前
blacksmith0发布了新的文献求助10
10秒前
赘婿应助wqqwds采纳,获得10
11秒前
11秒前
无私小苏完成签到,获得积分10
12秒前
zjm发布了新的文献求助10
12秒前
12秒前
等意送汝发布了新的文献求助10
13秒前
小二郎应助科研通管家采纳,获得10
13秒前
13秒前
危机的阁应助科研通管家采纳,获得10
13秒前
13秒前
小二郎应助科研通管家采纳,获得10
13秒前
Akim应助科研通管家采纳,获得10
13秒前
危机的阁应助科研通管家采纳,获得10
14秒前
Owen应助啦啦啦啦采纳,获得10
14秒前
MIZU应助科研通管家采纳,获得10
14秒前
14秒前
Akim应助科研通管家采纳,获得10
14秒前
ln177应助科研通管家采纳,获得10
14秒前
无极微光应助回忆采纳,获得20
14秒前
MIZU应助科研通管家采纳,获得10
14秒前
14秒前
ln177应助科研通管家采纳,获得10
14秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5743959
求助须知:如何正确求助?哪些是违规求助? 5416957
关于积分的说明 15348782
捐赠科研通 4884467
什么是DOI,文献DOI怎么找? 2625868
邀请新用户注册赠送积分活动 1574670
关于科研通互助平台的介绍 1531547