离子
化学
自电离
化学物理
电化学
化学反应
电化学电位
吸附
化学平衡
原子物理学
电离
物理化学
有机化学
电极
物理
光离子化
作者
Christian F. Chamberlayne,Richard N. Zare
摘要
A water microdroplet in air or oil typically possesses an electric double layer (EDL) from the preferential adsorption of surface-bound ions at the periphery. We present the calculations of the ion gradients within a microdroplet at equilibrium, including systems containing buffers and water autoionization. These ion gradients are used to calculate the potential energy stored within the microdroplet. We consider how this stored potential energy can be utilized to drive chemical reactions, much like an electrochemical cell. Effective voltages as high as 111 mV are found for microdroplets having a low surface charge density (0.01 ions per nm2). Two sources of potential energy are investigated: (1) the electrostatic energy of the EDL of the microdroplet and (2) shifts in other chemical equilibria coupled to the main reaction through the EDL. A particularly important example of the latter is water autoionization, wherein the reaction of interest causes a flattening of the [H+] gradient within the EDL, resulting in a net recombination of H+ and OH− throughout the microdroplet. Numerical calculations are performed using a continuum model consisting of a balance between the electromigration and diffusion of ions throughout the microdroplet. Our treatment accounts for the autoionization of water and any chemical equilibrium of buffers present. The results are presented for uncharged water microdroplets with low amounts of salts and simple buffers in them. However, the calculational method presented here can be applied to microdroplets of any net charge, composed of any solvent, containing ions of any valence, and containing complex mixtures of chemical equilibria.
科研通智能强力驱动
Strongly Powered by AbleSci AI