Federated learning for malware detection in IoT devices

计算机科学 恶意软件 联合学习 稳健性(进化) 人工智能 机器学习 背景(考古学) 自编码 对手 深度学习 计算机安全 感知器 人工神经网络 生物化学 生物 基因 古生物学 化学
作者
Valerian Rey,Pedro Miguel Sánchez Sánchez,Alberto Huertas Celdrán,Gérôme Bovet
出处
期刊:Computer Networks [Elsevier]
卷期号:204: 108693-108693 被引量:211
标识
DOI:10.1016/j.comnet.2021.108693
摘要

This work investigates the possibilities enabled by federated learning concerning IoT malware detection and studies security issues inherent to this new learning paradigm. In this context, a framework that uses federated learning to detect malware affecting IoT devices is presented. N-BaIoT, a dataset modeling network traffic of several real IoT devices while affected by malware, has been used to evaluate the proposed framework. Both supervised and unsupervised federated models (multi-layer perceptron and autoencoder) able to detect malware affecting seen and unseen IoT devices of N-BaIoT have been trained and evaluated. Furthermore, their performance has been compared to two traditional approaches. The first one lets each participant locally train a model using only its own data, while the second consists of making the participants share their data with a central entity in charge of training a global model. This comparison has shown that the use of more diverse and large data, as done in the federated and centralized methods, has a considerable positive impact on the model performance. Besides, the federated models, while preserving the participant's privacy, show similar results as the centralized ones. As an additional contribution and to measure the robustness of the federated approach, an adversarial setup with several malicious participants poisoning the federated model has been considered. The baseline model aggregation averaging step used in most federated learning algorithms appears highly vulnerable to different attacks, even with a single adversary. The performance of other model aggregation functions acting as countermeasures is thus evaluated under the same attack scenarios. These functions provide a significant improvement against malicious participants, but more efforts are still needed to make federated approaches robust.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
漠之梦完成签到,获得积分10
刚刚
张雯雯发布了新的文献求助10
1秒前
1秒前
科研通AI6应助B站萧亚轩采纳,获得10
1秒前
英姑应助B站萧亚轩采纳,获得10
2秒前
科研通AI6应助B站萧亚轩采纳,获得10
2秒前
万信心完成签到,获得积分10
2秒前
完美世界应助B站萧亚轩采纳,获得10
2秒前
科研通AI6应助B站萧亚轩采纳,获得10
2秒前
科研通AI6应助B站萧亚轩采纳,获得10
2秒前
科研通AI6应助B站萧亚轩采纳,获得30
2秒前
共享精神应助B站萧亚轩采纳,获得10
2秒前
研友_VZG7GZ应助B站萧亚轩采纳,获得10
2秒前
英俊的铭应助Annie采纳,获得10
2秒前
独特天问完成签到,获得积分10
2秒前
Ksharp10完成签到,获得积分10
2秒前
852应助ly采纳,获得10
2秒前
2秒前
SciGPT应助Key采纳,获得10
3秒前
小王完成签到 ,获得积分10
3秒前
3秒前
wpp完成签到,获得积分10
4秒前
4秒前
情怀应助盛乾亮采纳,获得10
4秒前
5秒前
dong发布了新的文献求助10
5秒前
大古完成签到,获得积分10
5秒前
怡然浩然完成签到,获得积分10
5秒前
5秒前
5秒前
仙女大王关注了科研通微信公众号
6秒前
LL完成签到,获得积分10
6秒前
张志超发布了新的文献求助10
6秒前
淡定秀发完成签到,获得积分10
6秒前
美年达发布了新的文献求助10
6秒前
111发布了新的文献求助10
8秒前
xiaoyue完成签到,获得积分10
8秒前
情怀应助朴实的垣采纳,获得30
8秒前
阿勒完成签到,获得积分10
8秒前
朴素代秋发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624997
求助须知:如何正确求助?哪些是违规求助? 4710900
关于积分的说明 14952616
捐赠科研通 4778944
什么是DOI,文献DOI怎么找? 2553493
邀请新用户注册赠送积分活动 1515444
关于科研通互助平台的介绍 1475731