Federated learning for malware detection in IoT devices

计算机科学 恶意软件 人工智能 机器学习 背景(考古学) 自编码 脆弱性(计算) 深度学习 计算机安全 无监督学习 感知器
作者
Valerian Rey,Pedro Miguel Sánchez Sánchez,Alberto Huertas Celdrán,Gérôme Bovet
出处
期刊:Computer Networks [Elsevier]
卷期号:204: 108693-108693
标识
DOI:10.1016/j.comnet.2021.108693
摘要

Billions of IoT devices lacking proper security mechanisms have been manufactured and deployed for the last years, and more will come with the development of Beyond 5G technologies. Their vulnerability to malware has motivated the need for efficient techniques to detect infected IoT devices inside networks. With data privacy and integrity becoming a major concern in recent years, increasing with the arrival of 5G and Beyond networks, new technologies such as federated learning and blockchain emerged. They allow training machine learning models with decentralized data while preserving its privacy by design. This work investigates the possibilities enabled by federated learning concerning IoT malware detection and studies security issues inherent to this new learning paradigm. In this context, a framework that uses federated learning to detect malware affecting IoT devices is presented. N-BaIoT, a dataset modeling network traffic of several real IoT devices while affected by malware, has been used to evaluate the proposed framework. Both supervised and unsupervised federated models (multi-layer perceptron and autoencoder) able to detect malware affecting seen and unseen IoT devices of N-BaIoT have been trained and evaluated. Furthermore, their performance has been compared to two traditional approaches. The first one lets each participant locally train a model using only its own data, while the second consists of making the participants share their data with a central entity in charge of training a global model. This comparison has shown that the use of more diverse and large data, as done in the federated and centralized methods, has a considerable positive impact on the model performance. Besides, the federated models, while preserving the participant’s privacy, show similar results as the centralized ones. As an additional contribution and to measure the robustness of the federated approach, an adversarial setup with several malicious participants poisoning the federated model has been considered. The baseline model aggregation averaging step used in most federated learning algorithms appears highly vulnerable to different attacks, even with a single adversary. The performance of other model aggregation functions acting as countermeasures is thus evaluated under the same attack scenarios. These functions provide a significant improvement against malicious participants, but more efforts are still needed to make federated approaches robust.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
放寒假的发布了新的文献求助10
2秒前
4秒前
青岩完成签到,获得积分10
5秒前
积极慕梅应助郭佳怡采纳,获得10
5秒前
酷波er应助Ploaris采纳,获得10
6秒前
7秒前
Zhilin发布了新的文献求助10
8秒前
10秒前
缪忆寒发布了新的文献求助10
11秒前
小蘑菇应助Wang采纳,获得10
11秒前
一念之间发布了新的文献求助10
11秒前
树酱完成签到,获得积分10
12秒前
RW乾完成签到,获得积分10
13秒前
14秒前
JIE发布了新的文献求助10
14秒前
17秒前
雪泥鸿爪发布了新的文献求助10
19秒前
研友_VZG7GZ应助彩色山河采纳,获得10
20秒前
22秒前
慕青应助Alan采纳,获得10
23秒前
佳佳完成签到,获得积分10
24秒前
25秒前
小金毛大人驾到完成签到,获得积分10
26秒前
千日粉发布了新的文献求助10
27秒前
超级泽洋发布了新的文献求助10
28秒前
yuaaaann完成签到,获得积分10
29秒前
艾米发布了新的文献求助10
29秒前
yidezeng完成签到,获得积分10
30秒前
llzuo发布了新的文献求助10
30秒前
研友_Z6k7B8完成签到 ,获得积分10
30秒前
Owen应助科研通管家采纳,获得10
31秒前
科研通AI2S应助科研通管家采纳,获得10
31秒前
酷波er应助科研通管家采纳,获得10
32秒前
CodeCraft应助科研通管家采纳,获得10
32秒前
香蕉觅云应助科研通管家采纳,获得30
32秒前
科研通AI2S应助科研通管家采纳,获得10
32秒前
Orange应助科研通管家采纳,获得10
32秒前
汉堡包应助科研通管家采纳,获得10
32秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141001
求助须知:如何正确求助?哪些是违规求助? 2791912
关于积分的说明 7800960
捐赠科研通 2448184
什么是DOI,文献DOI怎么找? 1302459
科研通“疑难数据库(出版商)”最低求助积分说明 626588
版权声明 601226