Federated learning for malware detection in IoT devices

计算机科学 恶意软件 联合学习 稳健性(进化) 人工智能 机器学习 背景(考古学) 自编码 对手 深度学习 计算机安全 感知器 人工神经网络 古生物学 生物化学 化学 生物 基因
作者
Valerian Rey,Pedro Miguel Sánchez Sánchez,Alberto Huertas Celdrán,Gérôme Bovet
出处
期刊:Computer Networks [Elsevier]
卷期号:204: 108693-108693 被引量:211
标识
DOI:10.1016/j.comnet.2021.108693
摘要

This work investigates the possibilities enabled by federated learning concerning IoT malware detection and studies security issues inherent to this new learning paradigm. In this context, a framework that uses federated learning to detect malware affecting IoT devices is presented. N-BaIoT, a dataset modeling network traffic of several real IoT devices while affected by malware, has been used to evaluate the proposed framework. Both supervised and unsupervised federated models (multi-layer perceptron and autoencoder) able to detect malware affecting seen and unseen IoT devices of N-BaIoT have been trained and evaluated. Furthermore, their performance has been compared to two traditional approaches. The first one lets each participant locally train a model using only its own data, while the second consists of making the participants share their data with a central entity in charge of training a global model. This comparison has shown that the use of more diverse and large data, as done in the federated and centralized methods, has a considerable positive impact on the model performance. Besides, the federated models, while preserving the participant's privacy, show similar results as the centralized ones. As an additional contribution and to measure the robustness of the federated approach, an adversarial setup with several malicious participants poisoning the federated model has been considered. The baseline model aggregation averaging step used in most federated learning algorithms appears highly vulnerable to different attacks, even with a single adversary. The performance of other model aggregation functions acting as countermeasures is thus evaluated under the same attack scenarios. These functions provide a significant improvement against malicious participants, but more efforts are still needed to make federated approaches robust.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玛卡巴卡应助平常的毛豆采纳,获得100
刚刚
默默的青旋完成签到,获得积分10
1秒前
4秒前
搜集达人应助淡淡采白采纳,获得10
4秒前
高高代珊完成签到 ,获得积分10
5秒前
gmc发布了新的文献求助10
6秒前
6秒前
7秒前
善学以致用应助Mian采纳,获得10
7秒前
学科共进发布了新的文献求助60
8秒前
LWJ完成签到 ,获得积分10
8秒前
8秒前
缓慢的糖豆完成签到,获得积分10
9秒前
阉太狼完成签到,获得积分10
9秒前
10秒前
soory完成签到,获得积分10
11秒前
任性的傲柏完成签到,获得积分10
11秒前
lwk205完成签到,获得积分0
11秒前
12秒前
一一完成签到,获得积分10
12秒前
12秒前
12秒前
高中生完成签到,获得积分10
13秒前
13秒前
13秒前
希望天下0贩的0应助TT采纳,获得10
14秒前
xxegt完成签到 ,获得积分10
14秒前
15秒前
爱吃泡芙发布了新的文献求助10
15秒前
susu完成签到,获得积分10
17秒前
会神发布了新的文献求助10
17秒前
KK完成签到,获得积分10
18秒前
充电宝应助justin采纳,获得10
20秒前
21秒前
Ch完成签到 ,获得积分10
22秒前
24秒前
ajun完成签到,获得积分10
24秒前
24秒前
春江完成签到,获得积分10
24秒前
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808