Federated learning for malware detection in IoT devices

计算机科学 恶意软件 联合学习 稳健性(进化) 人工智能 机器学习 背景(考古学) 自编码 对手 深度学习 计算机安全 感知器 人工神经网络 生物化学 生物 基因 古生物学 化学
作者
Valerian Rey,Pedro Miguel Sánchez Sánchez,Alberto Huertas Celdrán,Gérôme Bovet
出处
期刊:Computer Networks [Elsevier BV]
卷期号:204: 108693-108693 被引量:211
标识
DOI:10.1016/j.comnet.2021.108693
摘要

This work investigates the possibilities enabled by federated learning concerning IoT malware detection and studies security issues inherent to this new learning paradigm. In this context, a framework that uses federated learning to detect malware affecting IoT devices is presented. N-BaIoT, a dataset modeling network traffic of several real IoT devices while affected by malware, has been used to evaluate the proposed framework. Both supervised and unsupervised federated models (multi-layer perceptron and autoencoder) able to detect malware affecting seen and unseen IoT devices of N-BaIoT have been trained and evaluated. Furthermore, their performance has been compared to two traditional approaches. The first one lets each participant locally train a model using only its own data, while the second consists of making the participants share their data with a central entity in charge of training a global model. This comparison has shown that the use of more diverse and large data, as done in the federated and centralized methods, has a considerable positive impact on the model performance. Besides, the federated models, while preserving the participant's privacy, show similar results as the centralized ones. As an additional contribution and to measure the robustness of the federated approach, an adversarial setup with several malicious participants poisoning the federated model has been considered. The baseline model aggregation averaging step used in most federated learning algorithms appears highly vulnerable to different attacks, even with a single adversary. The performance of other model aggregation functions acting as countermeasures is thus evaluated under the same attack scenarios. These functions provide a significant improvement against malicious participants, but more efforts are still needed to make federated approaches robust.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张珂完成签到 ,获得积分20
刚刚
简单十三完成签到,获得积分10
1秒前
小麦完成签到,获得积分10
1秒前
慕青应助果实采纳,获得10
2秒前
3秒前
慕容绝义发布了新的文献求助10
3秒前
健忘的飞雪完成签到,获得积分10
3秒前
QC关注了科研通微信公众号
3秒前
善学以致用应助李亚楠采纳,获得10
4秒前
LaTeXer应助张腾飞采纳,获得50
4秒前
4秒前
Lucas应助xixixii采纳,获得10
5秒前
体贴的青烟完成签到,获得积分10
5秒前
不要引力完成签到,获得积分10
5秒前
ggzipho完成签到,获得积分10
6秒前
活泼的惜天完成签到,获得积分10
8秒前
LaTeXer应助seattle采纳,获得50
8秒前
诸葛语蝶完成签到,获得积分10
8秒前
喜宝完成签到 ,获得积分10
9秒前
愉快惜海发布了新的文献求助10
9秒前
yanshapo发布了新的文献求助10
9秒前
研友_Zb1rln完成签到,获得积分10
9秒前
nojivv完成签到,获得积分10
9秒前
xiaoE完成签到,获得积分10
10秒前
叶明昭完成签到,获得积分10
10秒前
Hudson发布了新的文献求助10
10秒前
11秒前
lixin完成签到,获得积分10
11秒前
Era发布了新的文献求助10
11秒前
斯文败类应助珺晔采纳,获得10
11秒前
12秒前
hhhh完成签到,获得积分10
12秒前
xiao完成签到 ,获得积分10
12秒前
12秒前
12秒前
彬略略完成签到,获得积分10
13秒前
slj完成签到,获得积分10
13秒前
13秒前
13秒前
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960479
求助须知:如何正确求助?哪些是违规求助? 3506634
关于积分的说明 11131585
捐赠科研通 3238880
什么是DOI,文献DOI怎么找? 1789914
邀请新用户注册赠送积分活动 872039
科研通“疑难数据库(出版商)”最低求助积分说明 803124