LQGDNet: A Local Quaternion and Global Deep Network for Facial Depression Recognition

四元数 人工智能 深度学习 计算机科学 模式识别(心理学) 特征(语言学) 卷积神经网络 特征提取 计算机视觉 人工神经网络 数学 几何学 语言学 哲学
作者
Yuanyuan Shang,Yuchen Pan,Jiang Xiao,Zhuhong Shao,Guodong Guo,Tie Liu,Hui Ding
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:14 (3): 2557-2563 被引量:29
标识
DOI:10.1109/taffc.2021.3139651
摘要

Recent visual-based depression recognition methods mostly use hand-crafted features with information lost in color channels, or deep network features with a limited performance from the finite data. In this paper, we propose a method called Local Quaternion and Global Deep Network (LQGDNet) which can combine advantages from hand-crafted and deep features. Specifically, the Quaternion XOR Asymmetrical Regional Local Gradient Coding (XOR-AR-LGC) is first designed, which encodes the facial images with local textures in the quaternion domain to keep the dependence of color channels, and integrated into the Quaternion Feature Extractor (QFE). To the best of our knowledge, it is the first attempt to use a quaternion-based method for facial depression recognition. Second, we design the Local Quaternion Representation Module (LQRM) composed of Local Deep Feature Extractor (LDFE) and QFE to output local quaternion facial features. Third, global deep facial features are encoded from the Global Deep Representation Module (GDRM) with the deep convolutional neural network. Finally, the LQGDNet integrates LQRM and GDRM with the local quaternion and global deep features and predicts the depression score. The experimental results on AVEC 2013 and AVEC 2014 show the superiority of our method compared to the state-of-the-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
北城完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
5秒前
爱听歌电灯胆完成签到 ,获得积分10
5秒前
不爱吃西葫芦完成签到 ,获得积分10
6秒前
申燕婷完成签到 ,获得积分10
7秒前
橙子完成签到 ,获得积分10
9秒前
ruochenzu发布了新的文献求助10
9秒前
fusheng完成签到 ,获得积分10
18秒前
浮生完成签到 ,获得积分10
23秒前
xinjie完成签到,获得积分10
25秒前
Will完成签到,获得积分10
30秒前
cuddly完成签到 ,获得积分10
31秒前
掉头发的小白完成签到,获得积分10
32秒前
不想看文献完成签到 ,获得积分10
35秒前
36秒前
当女遇到乔完成签到 ,获得积分10
36秒前
独行者完成签到,获得积分10
37秒前
眼睛大的电脑完成签到,获得积分10
37秒前
39秒前
敏敏发布了新的文献求助10
40秒前
木木完成签到 ,获得积分10
41秒前
量子星尘发布了新的文献求助10
41秒前
JamesPei应助科研通管家采纳,获得10
42秒前
彭于晏应助科研通管家采纳,获得10
42秒前
如意2023完成签到 ,获得积分10
42秒前
fomo完成签到,获得积分10
46秒前
nagi发布了新的文献求助10
49秒前
jfeng完成签到,获得积分10
51秒前
JN完成签到,获得积分10
59秒前
忐忑的书桃完成签到 ,获得积分10
1分钟前
qaplay完成签到 ,获得积分0
1分钟前
友好语风完成签到,获得积分10
1分钟前
CLTTTt完成签到,获得积分10
1分钟前
yk完成签到,获得积分10
1分钟前
甜美的初蓝完成签到 ,获得积分10
1分钟前
早安完成签到 ,获得积分10
1分钟前
初昀杭完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038066
求助须知:如何正确求助?哪些是违规求助? 3575779
关于积分的说明 11373801
捐赠科研通 3305584
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022